Unknown

Dataset Information

0

Cellular mechanisms underlying burst firing in substantia nigra dopamine neurons.


ABSTRACT: Burst firing of substantia nigra dopamine (SN DA) neurons is believed to represent an important teaching signal that instructs synaptic plasticity and associative learning. However, the mechanisms through which synaptic excitation overcomes the limiting effects of somatic Ca(2+)-dependent K(+) current to generate burst firing are controversial. Modeling studies suggest that synaptic excitation sufficiently amplifies oscillatory dendritic Ca(2+) and Na(+) channel currents to lead to the initiation of high-frequency firing in SN DA neuron dendrites. To test this model, visually guided compartment-specific patch-clamp recording and ion channel manipulation were applied to rodent SN DA neurons in vitro. As suggested previously, the axon of SN DA neurons was typically found to originate from a large-diameter dendrite that was proximal to the soma. However, in contrast to the predictions of the model, (1) somatic current injection generated firing that was similar in frequency and form to burst firing in vivo, (2) the efficacy of glutamatergic excitation was inversely related to the distance of excitation from the axon, (3) pharmacological blockade or genetic deletion of Ca(2+) channels did not prevent high-frequency firing, (4) action potential bursts were invariably detected first at sites that were proximal to the axon, and (5) pharmacological blockade of Na(+) channels in the vicinity of the axon/soma but not dendritic excitation impaired burst firing. Together, these data suggest that SN DA neurons integrate their synaptic input in a more conventional manner than was hypothesized previously.

SUBMITTER: Blythe SN 

PROVIDER: S-EPMC2834564 | biostudies-literature | 2009 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cellular mechanisms underlying burst firing in substantia nigra dopamine neurons.

Blythe Sarah N SN   Wokosin David D   Atherton Jeremy F JF   Bevan Mark D MD  

The Journal of neuroscience : the official journal of the Society for Neuroscience 20091201 49


Burst firing of substantia nigra dopamine (SN DA) neurons is believed to represent an important teaching signal that instructs synaptic plasticity and associative learning. However, the mechanisms through which synaptic excitation overcomes the limiting effects of somatic Ca(2+)-dependent K(+) current to generate burst firing are controversial. Modeling studies suggest that synaptic excitation sufficiently amplifies oscillatory dendritic Ca(2+) and Na(+) channel currents to lead to the initiatio  ...[more]

Similar Datasets

| S-EPMC8148213 | biostudies-literature
| S-EPMC7606778 | biostudies-literature
| S-EPMC3007632 | biostudies-literature
| S-EPMC6585833 | biostudies-literature
| S-EPMC5822454 | biostudies-literature
| S-EPMC6745265 | biostudies-literature
| S-EPMC4593176 | biostudies-literature
| S-EPMC6421099 | biostudies-literature
| S-EPMC4934424 | biostudies-other