Project description:Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are responsible for the majority of excitatory transmission at the synaptic cleft. Mechanically speaking, agonist binding to the ligand binding domain (LBD) activates the receptor by triggering a conformational change that is transmitted to the transmembrane region, opening the ion channel pore. We use fully atomistic molecular dynamics simulations to investigate the binding process in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, an iGluR subtype. The string method with swarms of trajectories was applied to calculate the possible pathways glutamate traverses during ligand binding. Residues peripheral to the binding cleft are found to metastably bind the ligand prior to ligand entry into the binding pocket. Umbrella sampling simulations were performed to compute the free energy barriers along the binding pathways. The calculated free energy profiles demonstrate that metastable interactions contribute substantially to the energetics of ligand binding and form local minima in the overall free energy landscape. Protein-ligand interactions at sites outside of the orthosteric agonist-binding site may serve to lower the transition barriers of the binding process.
Project description:Ionotropic glutamate receptors (iGluRs), a family of ligand-gated ion channels, are responsible for the majority of fast excitatory neurotransmission in the central nervous system. Within this family, different members serve distinct roles at glutamatergic synapses. Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors mediate fast depolarization while N-methyl-D-aspartate (NMDA) receptors mediate the slower component of the excitatory postsynaptic potential. These disparate functions suggest alternate modes of regulation. In this work, we show that endogenous regulators of iGluRs have different abilities to bind to specific domains of NMDA NR1-1b and AMPA GluR2 subunits. We have previously shown that the sulfated neurosteroids pregnenolone sulfate and 3alpha-hydroxy-5beta-pregnan-20-one sulfate bind to the extracellular glutamate-binding core (S1S2) of the GluR2 subunit. Here we show that neither neurosteroid binds to the S1S2 domain of the NMDA NR1-1b subunit. This NR1-1b NMDA domain does, however, bind to the endogenous polyamines spermine and spermidine as well as Zn(II). Binding of the polyamines and Zn(II) to the S1S2 domain of the GluR2 subunit was not observed. This binding of Zn(II) and polyamines to the S1S2 domain of the NR1-1b subunit defines a new binding site for each of these modulators.
Project description:Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate chemical communication between neurons at synapses. A variant iGluR subfamily, the Ionotropic Receptors (IRs), was recently proposed to detect environmental volatile chemicals in olfactory cilia. Here, we elucidate how these peripheral chemosensors have evolved mechanistically from their iGluR ancestors. Using a Drosophila model, we demonstrate that IRs act in combinations of up to three subunits, comprising individual odor-specific receptors and one or two broadly expressed coreceptors. Heteromeric IR complex formation is necessary and sufficient for trafficking to cilia and mediating odor-evoked electrophysiological responses in vivo and in vitro. IRs display heterogeneous ion conduction specificities related to their variable pore sequences, and divergent ligand-binding domains function in odor recognition and cilia localization. Our results provide insights into the conserved and distinct architecture of these olfactory and synaptic ion channels and offer perspectives into the use of IRs as genetically encoded chemical sensors.
Project description:Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate the majority of excitatory neurotransmission in the central nervous system. iGluRs open their ion channels in response to binding of the neurotransmitter glutamate, rapidly depolarize the postsynaptic neuronal membrane, and initiate signal transduction. Recent studies using X-ray crystallography and cryo-electron microscopy have determined full-length iGluR structures that (1) uncover the receptor architecture in an unliganded, resting state, (2) reveal conformational changes produced by ligands in order to activate iGluRs, open their ion channels, and conduct ions, and (3) show how activated, glutamate-bound iGluRs can adopt a nonconducting desensitized state. These new findings, combined with the results of previous structural and functional experiments, kinetic and molecular modeling, mutagenesis, and biochemical analyses, provide new views on the structural mechanisms of iGluR gating.
Project description:Ionotropic glutamate receptors (iGluRs) mediate most excitatory neurotransmission in the central nervous system and function by opening their ion channel in response to binding of agonist glutamate. Here, we report a structure of a homotetrameric rat GluA2 receptor in complex with partial agonist (S)-5-nitrowillardiine. Comparison of this structure with the closed-state structure in complex with competitive antagonist ZK 200775 suggests conformational changes that occur during iGluR gating. Guided by the structures, we engineered disulfide cross-links to probe domain interactions that are important for iGluR gating events. The combination of structural information, kinetic modeling, and biochemical and electrophysiological experiments provides insight into the mechanism of iGluR gating.
Project description:AMPA subtype ionotropic glutamate receptors (iGluRs) mediate the majority of fast neurotransmission across excitatory synapses in the central nervous system. Each AMPA receptor is composed of four multi-domain subunits that are organized into layers of two amino-terminal domain (ATD) dimers, two ligand-binding domain (LBD) dimers, transmembrane domains and carboxy-terminal domains. We introduced cysteine substitutions at the intersubunit interfaces of AMPA receptor subunit GluA2 and confirmed substituted cysteine crosslink formation by SDS-PAGE. The functional consequence of intersubunit crosslinks was assessed by recording GluA2-mediated currents in reducing and non-reducing conditions. Strong redox-dependent changes in GluA2-mediated currents were observed for cysteine substitutions at the LBD dimer-dimer interface but not at the ATD dimer-dimer interface. We conclude that during gating, LBD dimers undergo significant relative displacement, while ATD dimers either maintain their relative positioning, or their relative displacement has no appreciable effect on AMPA receptor function.
Project description:Ionotropic glutamate receptors (iGluRs) mediate neuronal communication at synapses throughout vertebrate and invertebrate nervous systems. We have characterized a family of iGluR-related genes in Drosophila, which we name ionotropic receptors (IRs). These receptors do not belong to the well-described kainate, AMPA, or NMDA classes of iGluRs, and they have divergent ligand-binding domains that lack their characteristic glutamate-interacting residues. IRs are expressed in a combinatorial fashion in sensory neurons that respond to many distinct odors but do not express either insect odorant receptors (ORs) or gustatory receptors (GRs). IR proteins accumulate in sensory dendrites and not at synapses. Misexpression of IRs in different olfactory neurons is sufficient to confer ectopic odor responsiveness. Together, these results lead us to propose that the IRs comprise a novel family of chemosensory receptors. Conservation of IR/iGluR-related proteins in bacteria, plants, and animals suggests that this receptor family represents an evolutionarily ancient mechanism for sensing both internal and external chemical cues.
Project description:The neurotransmitter glutamate mediates excitatory synaptic transmission by activating ionotropic glutamate receptors (iGluRs). In Caenorhabditis elegans, the GLR-1 receptor subunit is required for glutamate-gated current in a subset of interneurons that control avoidance behaviors. Current mediated by GLR-1-containing iGluRs depends on SOL-1, a transmembrane CUB-domain protein that immunoprecipitates with GLR-1. We have found that reconstitution of glutamate-gated current in heterologous cells depends on three proteins, STG-1 (a C. elegans stargazin-like protein), SOL-1, and GLR-1. Here, we use genetic and pharmacological perturbations along with rapid perfusion electrophysiological techniques to demonstrate that SOL-1 functions to slow the rate and limit the extent of receptor desensitization as well as to enhance the recovery from desensitization. We have also identified a SOL-1 homologue from Drosophila and show that Dro SOL1 has a conserved function in promoting C. elegans glutamate-gated currents. SOL-1 homologues may play critical roles in regulating glutamatergic neurotransmission in more complex nervous systems.
Project description:Mast cells are emerging as players in the communication between peripheral nerve endings and cells of the immune system. However, it is not clear the mechanism by which mast cells communicate with peripheral nerves. We previously found that mast cells located within healing tendons can express glutamate receptors, raising the possibility that mast cells may be sensitive to glutamate signaling. To evaluate this hypothesis, we stimulated primary mast cells with glutamate and showed that glutamate induced the profound upregulation of a panel of glutamate receptors of both the ionotropic type (NMDAR1, NMDAR2A, and NMDAR2B) and the metabotropic type (mGluR2 and mGluR7) at both the mRNA and protein levels. The binding of glutamate to glutamate receptors on the mast cell surface was confirmed. Further, glutamate had extensive effects on gene expression in the mast cells, including the upregulation of pro-inflammatory components such as IL-6 and CCL2. Glutamate also induced the upregulation of transcription factors, including Egr2, Egr3 and, in particular, FosB. The extensive induction of FosB was confirmed by immunofluorescence assessment. Glutamate receptor antagonists abrogated the responses of the mast cells to glutamate, supporting the supposition of a functional glutamate-glutamate receptor axis in mast cells. Finally, we provide in vivo evidence supporting a functional glutamate-glutamate receptor axis in the mast cells of injured tendons. Together, these findings establish glutamate as an effector of mast cell function, thereby introducing a novel principle for how cells in the immune system can communicate with nerve cells.
Project description:Neurological glutamate receptors are among the most important and intensely studied protein ligand binding systems in humans. They are crucial for the functioning of the central nervous system and involved in a variety of pathologies. Apart from the neurotransmitter glutamate, several artificial, agonistic and antagonistic ligands are known. Of particular interest here are novel photoswitchable agonists that would open the field of optogenetics to glutamate receptors. The receptor proteins are complex, membrane-bound multidomain oligomers that undergo large scale functional conformational changes, making detailed studies of their atomic structure challenging. Therefore, a thorough understanding of the microscopic details of ligand binding and receptor activation remains elusive in many cases. This topic has been successfully addressed by theoretical studies in the past and in this paper, we present extensive molecular dynamics simulation and free energy calculation results on the binding of AMPA and an AMPA derivative, which is the basis for designing light-sensitive ligands. We provide a two-step model for ligand binding domain activation and predict binding free energies for novel compounds in good agreement to experimental observations.