Project description:Prolactin (PRL) is a multifunctional hormone with prominent roles in regulating growth and reproduction. The guinea pig (Cavia porcellus) has been extensively used in endocrine and reproduction research. Thus far, the PRL cDNA and protein have not been isolated from the guinea pig. In the present study, we used information derived from the public guinea pig genome database as a tool for identifying guinea pig PRL and PRL-related proteins. Guinea pig PRL exhibits prominent nucleotide and amino acid sequence differences when compared with PRLs of other eutherian mammals. In contrast, guinea pig GH is highly conserved. Expression of PRL and GH in the guinea pig is prominent in the anterior pituitary, similar to known expression patterns of PRL and GH for other species. Two additional guinea pig cDNAs were identified and termed PRL-related proteins (PRLRP1, PRLRP2). They exhibited a more distant relationship to PRL and their expression was restricted to the placenta. Recombinant guinea pig PRL protein was generated and shown to be biologically active in the PRL-responsive Nb2 lymphoma cell bioassay. In contrast, recombinant guinea pig PRLRP1 protein did not exhibit PRL-like bioactivity. In summary, we have developed a new set of research tools for investigating the biology of the PRL family in an important animal model, the guinea pig.
Project description:The prolactin (PRL) family of hormones and cytokines participates in the regulation of optimal reproductive performance in the mouse and rat. Members of the PRL family are expressed in the anterior pituitary, uterus, and/or placenta. In the present study, we investigated the ontogeny of PRL family 7, subfamily b, member 1 (PRL7B1; also called PRL-like protein-N, PLP-N) expression in the developing mouse placenta and established a mouse model for investigating the biological function of PRL7B1. Transcripts for Prl7b1 were first detected on Gestation Day (d) 8.5. From gestation d8.5 through d14.5, Prl7b1 was expressed in trophoblast cells residing at the interface between maternal mesometrial decidua and the developing placenta. On gestation d17.5, the predominant cellular source of Prl7b1 mRNA was migratory trophoblast cells invading into the uterine mesometrial decidua. The Prl7b1 null mutant allele was generated via replacement of the endogenous Prl7b1 coding sequence with beta-galactosidase (LacZ) reporter and neomycin cassettes. The mutant Prl7b1 allele was successfully passed through the germline. Homozygous Prl7b1 mutant mice were viable and fertile. Under standard animal housing conditions, Prl7b1 had undetectable effects on placentation and pregnancy. Hypoxia exposure during pregnancy evoked adaptations in the organization of the wild-type placenta that were not observed in Prl7b1 null placentation sites. In summary, PRL7B1 is viewed as a part of a pathway regulating placental adaptations to physiological stressors.
Project description:Prolactin (PRL) is a pleiotropic cytokine promoting cellular proliferation and differentiation. Because PRL activates the Src family of tyrosine kinases (SFK), we have studied the role of these kinases in PRL cell proliferation signaling. PRL induced [(3)H]thymidine incorporation upon transient transfection of BaF-3 cells with the PRL receptor. This effect was inhibited by cotransfection with the dominant negative mutant of c-Src (K>A295/Y>F527, SrcDM). The role of SFK in PRL-induced proliferation was confirmed in the BaF-3 PRL receptor-stable transfectant, W53 cells, where PRL induced Fyn and Lyn activation. The SFK-selective inhibitors PP1/PP2 and herbimycin A blocked PRL-dependent cell proliferation by arresting the W53 cells in G1, with no evident apoptosis. In parallel, PP1/PP2 inhibited PRL induction of cell growth-related genes c-fos, c-jun, c-myc, and odc. These inhibitors have no effect on PRL-mediated activation of Ras/Mapk and Jak/Start pathways. In contrast, they inhibited the PRL-dependent stimulation of the SFKs substrate Sam68, the phosphorylation of the tyrosine phosphatase Shp2, and the PI3K-dependent Akt and p70S6k serine kinases. Consistently, transient expression of SrcDM in W53 cells also blocked PRL activation of Akt. These results demonstrate that activation of SFKs is required for cell proliferation induced by PRL.
Project description:We used a representative of one of the oldest extant vertebrate lineages (jawless fish or agnathans) to investigate the early evolution and function of the growth hormone (GH)/prolactin (PRL) family. We identified a second member of the GH/PRL family in an agnathan, the sea lamprey (Petromyzon marinus). Structural, phylogenetic, and synteny analyses supported the identification of this hormone as prolactin-like (PRL-L), which has led to added insight into the evolution of the GH/PRL family. At least two ancestral genes were present in early vertebrates, which gave rise to distinct GH and PRL-L genes in lamprey. A series of gene duplications, gene losses, and chromosomal rearrangements account for the diversity of GH/PRL-family members in jawed vertebrates. Lamprey PRL-L is produced in the proximal pars distalis of the pituitary and is preferentially bound by the lamprey PRL receptor, whereas lamprey GH is preferentially bound by the lamprey GH receptor. Pituitary PRL-L messenger RNA (mRNA) levels were low in larvae, then increased significantly in mid-metamorphic transformers (stage 3); thereafter, levels subsided in final-stage transformers and metamorphosed juveniles. The abundance of PRL-L mRNA and immunoreactive protein increased in the pituitary of juveniles under hypoosmotic conditions, and treatment with PRL-L blocked seawater-associated inhibition of freshwater ion transporters. These findings clarify the origin and divergence of GH/PRL family genes in early vertebrates and reveal a function of PRL-L in osmoregulation of sea lamprey, comparable to a role of PRLs that is conserved in jawed vertebrates.
Project description:Prolactin family 8, subfamily a, member 2 (PRL8A2; also called decidual prolactin-related protein; dPRP) is a member of the expanded prolactin family. PRL8A2 is expressed in the uterine decidua and contributes to pregnancy-dependent adaptations to hypoxia. The purpose of this study was to identify gene targets for PRL8A2 action within the uteroplacental compartment. Affymetrix DNA microarray analysis was performed for RNA samples from WT and Prl8a2 null tissues. Validation of the DNA microarray was performed using quantitative RT-PCR. Nine genes were confirmed with decreased expression in Prl8a2 null tissues (e.g., Klk7, Rimklb, Arhgef6, Calm4, Sprr2h, Prl4a1, Ccl27, Lipg, and Htra3). These include potential decidual, endothelial and trophoblast cell targets positively regulated by PRL8A2. A significant upregulation of Derl3, Herpud1, Creld2, Hsp90b1, Ddit3 and Hspa5 was identified in Prl8a2 null tissues, reflecting an increased endoplasmic reticulum (ER) stress response. ER stress genes were prominently expressed in the uterine decidua. We propose that PRL8A2 is a mediator of progesterone-dependent modulation of intrauterine responses to physiological stressors.
Project description:Despite the growing body of evidence supporting prolactin (PRL) actions in human breast cancer, little is known regarding PRL regulation of its own receptor in these cells. Ligand-initiated endocytosis is a key process in the regulation of receptor availability and signaling cascades that may lead to oncogenic actions. Although exposure to exogenous PRL accelerates degradation of the long isoform of the PRL receptor (lPRLR), neither the signals initiated by PRL that lead to lPRLR internalization and subsequent down-regulation, nor the relationship to downstream pathways are understood in breast cancer cells. In this study, we showed that PRL-induced down-regulation of the lPRLR was reduced by inhibition of src family kinases (SFKs), but not Janus kinase 2, in MCF-7 cells. Inhibition of SFKs also resulted in accumulation of a PRL-induced PRLR fragment containing the extracellular domain, which appeared to be generated from newly synthesized PRLR. lPRLR was constitutively associated with SFKs in lipid rafts. PRL-induced SFK activation led to recruitment of the guanosine triphosphatase, dynamin-2, to an internalization complex, resulting in endocytosis. Inhibition of endocytosis by small interfering RNA-mediated knockdown of dynamin-2 blocked PRL-induced down-regulation of lPRLR, confirming that internalization is essential for this process. Endocytosis also was required for optimal phosphorylation of ERK1/2 and Akt, but not for Janus kinase 2 or signal transducer and activator of transcription 5, indicating that internalization selectively modulates signaling cascades. Together, these data indicate that SFKs are key mediators of ligand-initiated lPRLR internalization, down-regulation, and signal transduction in breast cancer cells, and underscore the importance of target cell context in receptor trafficking and signal transduction.
Project description:A variety of fundamental differences have evolved in the physiology of the human and rodent prolactin (PRL) systems. The PRL gene in humans and other primates contains an alternative promoter, 5.8 kbp upstream of the pituitary transcription start site, which drives expression of PRL in "extrapituitary" tissues, where PRL is believed to exert local, or paracrine, actions. Several of these extrapituitary PRL tissues serve a reproductive function (eg, mammary gland, decidua, prostate, etc), consistent with the hypothesis that local PRL production may be involved in, and required for, normal reproductive physiology in primates. Rodent research models have generated significant findings regarding the role of PRL in reproduction. Specifically, disruption (knockout) of either the PRL gene or its receptor causes profound female reproductive defects at several levels (ovaries, preimplantation endometrium, mammary glands). However, the rodent PRL gene differs significantly from the human, most notably lacking the alternative promoter. Understanding of the physiological regulation and function of extrapituitary PRL has been limited by the absence of a readily accessible experimental model, because the rodent PRL gene does not contain the alternative promoter. To overcome these limitations, we have generated mice that have been "humanized" with regard to the structural gene and tissue expression of PRL. Here, we present the characterization of these animals, demonstrating that the human PRL transgene is responsive to known physiological regulators both in vitro and in vivo. More importantly, the expression of the human PRL transgene is able to rescue the reproductive defects observed in mouse PRL knockout (mPRL(-)) females, validating their usefulness in studying the function or regulation of this hormone in a manner that is relevant to human physiology.
Project description:ContextIsolated prolactin (PRL) deficiency is a rare entity of unknown etiology manifesting as failure of puerperal lactogenesis.ObjectiveThe aim of the study was to determine the cause of isolated PRL deficiency in an affected woman.Design and settingWe examined genetic and autoimmune causes of isolated PRL deficiency at academic medical centers.PatientThe patient was a 39-year-old woman with puerperal alactogenesis after two deliveries and undetectable PRL. The other pituitary axes, serum calcium levels, and cranial magnetic resonance imaging were normal.InterventionRecombinant human PRL (r-hPRL) was administered to the patient.Main outcome measuresWe measured the sequencing of candidate genes and immunofluorescence analysis of autoantibodies directed against pituitary endocrine cells.ResultsThere were no rare sequence variants in the genes encoding for PRL, putative PRL-releasing peptide, putative PRL-releasing peptide receptor, or in other genes important for lactotroph lineage development (POU1F1, PROP1, LHX3, LHX4, HESX1, OTX2, and LSD1). The patient serum, on the contrary, contained autoantibodies that specifically recognized a subset of PRL-secreting cells but not PRL itself or any other pituitary cells or hormones. The mother was able to lactate fully after 17 days of treatment with r-hPRL 60 μg/kg every 12 hours, but alactogenesis resumed after treatment was completed.ConclusionsThese studies report a new autoimmune etiology for women with isolated PRL deficiency and puerperal alactogenesis.
Project description:BackgroundHigher circulating prolactin has been associated with increased breast cancer risk. Prolactin binding to the prolactin receptor (PRLR) can activate the transcription factor STAT5, thus, we examined the association between plasma prolactin and breast cancer risk by tumor expression of PRLR, STAT5, and the upstream kinase JAK2.MethodsUsing data from 745 cases and 2454 matched controls in the Nurses' Health Study, we conducted polytomous logistic regression to examine the association between prolactin (> 11 ng/mL vs. ≤ 11 ng/mL) measured within 10 years of diagnosis and breast cancer risk by PRLR (nuclear [N], cytoplasmic [C]), phosphorylated STAT5 (pSTAT5; N, C), and phosphorylated JAK2 (pJAK2; C) tumor expression. Analyses were conducted separately in premenopausal (n = 168 cases, 765 controls) and postmenopausal women (n = 577 cases, 1689 controls).ResultsIn premenopausal women, prolactin levels > 11 ng/mL were positively associated with risk of tumors positive for pSTAT5-N (OR 2.30, 95% CI 1.02-5.22) and pSTAT5-C (OR 1.64, 95% CI 1.01-2.65), but not tumors that were negative for these markers (OR 0.98, 95% CI 0.65-1.46 and OR 0.73, 95% CI 0.43-1.25; p-heterogeneity = 0.06 and 0.02, respectively). This was stronger when tumors were positive for both pSTAT5-N and pSTAT5-C (OR 2.88, 95% CI 1.14-7.25). No association was observed for PRLR or pJAK2 (positive or negative) and breast cancer risk among premenopausal women. Among postmenopausal women, plasma prolactin levels were positively associated with breast cancer risk irrespective of PRLR, pSTAT5, or pJAK2 expression (all p-heterogeneity ≥ 0.21).ConclusionWe did not observe clear differences in the association between plasma prolactin and breast cancer risk by tumor expression of PRLR or pJAK2, although associations for premenopausal women were observed for pSTAT5 positive tumors only. While additional studies are needed, this suggests that prolactin may act on human breast tumor development through alternative pathways.
Project description:One of the potential biomarkers for ovarian cancer patients is high serum level of prolactin (PRL), which is a growth factor that may promote tumor cell growth. The prolactin receptor (PRLR) and human cytomegalovirus (HCMV) proteins are frequently detected in ovarian tumor tissue specimens, but the potential impact of HCMV infection on the PRL system have so far not been investigated. In this study, HCMV's effects on PRL and PRLR expression were assessed in infected ovarian cancer cells (SKOV3) by PCR and Western blot techniques. The levels of both PRL and PRLR transcripts as well as the corresponding proteins were highly increased in HCMV-infected SKOV3 cells. Tissue specimens obtained from 10 patients with ovarian cancer demonstrated high expression of PRLR, HCMV-IE, and pp65 proteins. Extensive expression of PRLR was detected in all examined ovarian tumor tissue specimens except for one from a patient who had focal expression of PRLR and this patient was HCMV-negative in her tumor. In conclusion, PRL and PRLR were induced to high levels in HCMV-infected ovarian cancer cells and PRLR expression was extensively detected in HCMV-infected ovarian tissue specimens. Highly induced PRL and PRLR by HCMV infection may be of relevance for the oncomodulatory role of this virus in ovarian cancer.