Project description:Although stroke remains a leading cause of disability and mortality worldwide, recently there have been significant advances related to our understanding of the genetic basis of stroke. Ongoing research efforts put us on the cusp for major breakthroughs in the field. In this review, we present the substantial evidence for the contribution of genetic variation to the development of stroke, and the difficulties posed in the study of stroke given the numerous genetically driven risk factors and stroke subtypes. We emphasize recent findings implementing candidate gene and genome-wide association approaches. We then discuss how emerging knowledge is informing and reshaping our understanding of stroke biology and how, in the near term, genetics may be used clinically to identify individuals who are at risk of disease or who may derive benefit from specific treatment modalities. Lastly, we address ongoing and future approaches that will continue to improve our understanding of stroke genetics.
Project description:Stroke genetics includes several topics of clinical interest, including (1) molecular genetic variations affecting risk of monogenic stroke syndromes; (2) molecular genetic variations affecting risk of common stroke syndromes, sometimes with specific effects on risk of specific main types of stroke or subtypes of ischemic and hemorrhagic stroke; (3) genetics of conditions associated with stroke risk e.g. white matter hyperintensities, atrial fibrillation and hypertension; (4) hereditary causes of familial aggregation of stroke; (5) epigenetic impact on protein expression during acute brain injury; (6) genetic influence on stroke recovery; and (7) pharmacogenetics. Genetic research methods include candidate gene studies; Genome Wide Association Studies; family studies; RNA and protein analyses; and advanced computer-aided analytical methods to detect statistically significant associations. Several methods that could improve our knowledge of stroke genetics are being developed e.g.: Exome content analysis; Next-generation sequencing; Whole genome sequencing; and Epigenetics. During 2012-2014, several Single Nucleotide Polymorphisms (SNPs) have been related to common ischemic stroke risk. Certain SNPs have been associated with risk of specific ischemic stroke subtypes such as large vessel disease and cardiac embolism, particular subtypes of intracerebral hemorrhage (ICH), especially lobar ICH, and with prognosis after ICH. Large international studies on stroke recovery and exome content are ongoing. Advanced mathematical models have been used to study how several SNPs can act together and increase stroke risk burden. Such efforts require large numbers of patients and controls, which is achieved by co-operation in large international consortia such as the International Stroke Genetics Consortium. This overview includes an introduction to genetics, stroke genetics in general, and different genetic variations that may influence stroke risk. It presents some of the latest reports on stroke genetics published in high impact journals. The role of pharmacogenetics, the current clinical situation, and future prospects will also be discussed.
Project description:In 2007, the first genetic risk variant, 9p21, was simultaneously discovered by two independent groups. 9p21 increases the risk of coronary artery disease in individuals with premature heart disease by twofold, and in the overall population the heterozygote is associated with a 25% increased risk and the homozygote with a 50% increased risk. It is of note that the risk mediated by 9p21 is independent of known risk factors. Since then, with the development of new technologies and the international consortium of CARDIoGRAM, there is now a total of 50 genetic risk variants confirmed and replicated for CAD. Of these 50, 35 mediate their risk by unknown mechanisms, indicating that the pathogenesis of atherosclerosis and myocardial infarction is due to additional factors as yet unknown. The role of genetic risk factors in the management of CAD is yet to be determined. Since many of them are independent of known risk factors, the genetic risk will in the future have to be incorporated into the guidelines, which recommend the target level of plasma LDL-C to be achieved based on the number of risk factors.
Project description:As a sequel of brain ischemia, selective neuronal loss (SNL)-as opposed to pannecrosis (i.e. infarction)-is attracting growing interest, particularly because it is now detectable in vivo. In acute stroke, SNL may affect the salvaged penumbra and hamper functional recovery following reperfusion. Rodent occlusion models can generate SNL predominantly in the striatum or cortex, showing that it can affect behavior for weeks despite normal magnetic resonance imaging. In humans, SNL in the salvaged penumbra has been documented in vivo mainly using positron emission tomography and (11)C-flumazenil, a neuronal tracer validated against immunohistochemistry in rodent stroke models. Cortical SNL has also been documented using this approach in chronic carotid disease in association with misery perfusion and behavioral deficits, suggesting that it can result from chronic or unstable hemodynamic compromise. Given these consequences, SNL may constitute a novel therapeutic target. Selective neuronal loss may also develop at sites remote from infarcts, representing secondary 'exofocal' phenomena akin to degeneration, potentially related to poststroke behavioral or mood impairments again amenable to therapy. Further work should aim to better characterize the time course, behavioral consequences-including the impact on neurological recovery and contribution to vascular cognitive impairment-association with possible causal processes such as microglial activation, and preventability of SNL.
Project description:In this paper, an empirical review of 64 teen tobacco use cessation studies is provided. Examined include program contents, delivery modalities, number of contacts, and expected quit rates. In addition, means of recruitment and retention of smokers in programming are discussed. Also, promising contemporary methods of teen smoking cessation are examined, including use of pharmacologic adjuncts, electronic technology, and cigarette price increases (and no smoking policy). Conclusions are made regarding implications for developing and implementing teen tobacco use cessation programs.
Project description:ObjectiveTo assess the usefulness of transcranial Doppler CO2 reactivity (CO2R) for prediction of ipsilateral ischemic stroke in carotid artery stenosis and occlusion with a meta-analysis of prospective studies based on individual patient data.MethodsWe searched Medline, Biosis Previews, Science Citation Index, The Cochrane Library, and EMBASE for studies in which patients with severe carotid artery stenosis or occlusion underwent Doppler CO2R testing (inhalation of CO2 or breath-holding) and were prospectively followed for ipsilateral ischemic stroke. Individual data from 754 patients from 9 studies were included. We used percentage cerebral blood flow velocity increase (pCi) during hypercapnia as the primary CO2R measure, and defined impaired reactivity as pCi <20% increase.ResultsIn a multiple regression model, impaired CO2R was independently associated with an increased risk of ipsilateral ischemic stroke (hazard ratio [HR] 3.69; confidence interval [CI] 2.01, 6.77; p < 0.0001). Risk prediction was similar for recently symptomatic vs asymptomatic patients. Using continuous values of pCi, a significant association between decreasing pCi and increasing risk of ipsilateral stroke was found: HR of 1.64 (95% CI 1.33, 2.02; p < 0.0001) per 10% decrease in pCi. For patients with asymptomatic internal carotid artery stenosis only (n = 330), a comparable stroke risk prediction was found: increasing HR 1.95 (95% CI 1.26, 3.04; p = 0.003) per 10% decrease in pCi.ConclusionsThis analysis supports the usefulness of CO2R in risk prediction for patients with severe carotid artery stenosis or occlusion, both in recently symptomatic and asymptomatic patients. Further studies should evaluate whether treatment strategies in asymptomatic patients based on CO2R could improve patient outcomes.
Project description:Studies over the past two decades have led to major advances in the pathogenesis of Paget's disease of bone (PDB) and particularly on the role of genetic factors. Germline mutations of different genes have been identified, as a possible cause of this disorder, and most of the underlying pathways are implicated in the regulation of osteoclast differentiation and function, whereas other are involved in cell autophagy mechanisms. In particular, about 30 different germline mutations of the Sequestosome 1 gene (SQSTM1) have been described in a significant proportion of familial and sporadic PDB cases. The majority of SQSTM1 mutations affect the ubiquitin-binding domain of the protein and are associated to a more severe clinical expression of the disease. Also, germline mutations in the ZNF687 and PFN1 genes have been associated to severe, early onset, polyostotic PDB with increased susceptibly to neoplastic degeneration, particularly giant cell tumor. Mutations in the VCP (Valosin Containing Protein) gene cause the autosomal dominant syndrome "Inclusion Body Myopathy, PDB, Fronto-temporal Dementia," characterized by pagetic manifestations, associated with myopathy, amyotrophic lateral sclerosis and fronto-temporal dementia. Moreover, germline mutations in the TNFRSF11A gene, which encodes for RANK, were associated with rare syndromes showing some histopathological, radiological, and clinical overlap with PDB and in two cases of early onset PDB-like disease. Likewise, genome wide association studies performed in unrelated PDB cases identified other potential predisposition genes and/or susceptibility loci. Thus, it is likely that polygenic factors are involved in the PDB pathogenesis in many individuals and that modifying genes may contribute in refining the clinical phenotype. Moreover, the contribution of somatic mutations of SQSTM1 gene and/or epigenetic mechanisms in the pathogenesis of skeletal pagetic abnormalities and eventually neoplastic degeneration, cannot be excluded. Indeed, clinical and experimental observations indicate that genetic susceptibility might not be a sufficient condition for the clinical development of PDB without the concomitant intervention of viral infection, in primis paramixoviruses, and/or other environmental factors (e.g., pesticides, heavy metals or tobacco exposure), at least in a subset of cases. This review summarizes the most important advances that have been made in the field of cellular and molecular biology PDB over the past decades.
Project description:Nonalcoholic fatty liver disease (NAFLD) is becoming the most frequent chronic liver disease worldwide. Metabolic (dysfunction) associated fatty liver disease (MAFLD) is suggested to replace the nomenclature of NAFLD. For individuals with metabolic dysfunction, multiple NAFLD-related factors also contribute to the development and progression of MAFLD including genetics and epigenetics. The application of genome-wide association study (GWAS) and exome-wide association study (EWAS) uncovers single-nucleotide polymorphisms (SNPs) in MAFLD. In addition to the classic SNPs in PNPLA3, TM6SF2, and GCKR, some new SNPs have been found recently to contribute to the pathogenesis of liver steatosis. Epigenetic factors involving DNA methylation, histone modifications, non-coding RNAs regulations, and RNA methylation also play a critical role in MAFLD. DNA methylation is the most reported epigenetic modification. Developing a non-invasion biomarker to distinguish metabolic steatohepatitis (MASH) or liver fibrosis is ongoing. In this review, we summarized and discussed the latest progress in genetic and epigenetic factors of NAFLD/MAFLD, in order to provide potential clues for MAFLD treatment.
Project description:The Nucleic Acids Research online Molecular Biology Database Collection is a public repository that lists more than 1000 databases described in this and previous Nucleic Acids Research annual database issues, as well as a selection of molecular biology databases described in other journals. All databases included in this Collection are freely available to the public. The 2008 update includes 1078 databases, 110 more than the previous one. The links to more than 80 databases have been updated and 25 obsolete databases have been removed from the list. The complete database list and summaries are available online at the Nucleic Acids Research web site, http://nar.oxfordjournals.org/.