Project description:The capacity of human memory is impressive. Previous reports have shown that when asked to memorize images, participants can recognize several thousands of visual objects in great details even with a single viewing of a few seconds per image. In this experiment, we tested recognition performance for natural scenes that participants saw for 20 ms only once (untrained group) or 22 times over many days (trained group) in an unrelated task. 400 images (200 previously viewed and 200 novel images) were flashed one at a time and participants were asked to lift their finger from a pad whenever they thought they had already seen the image (go/no-go paradigm). Compared to previous reports of excellent recognition performance with only single presentations of a few seconds, untrained participants were able to recognize only 64% of the 200 images they had seen few minutes before. On the other hand, trained participants, who had processed the flashed images (20 ms) several times, could correctly recognize 89% of them. EEG recordings confirmed these behavioral results. As early as 230 ms after stimulus onset, a significant event-related-potential (ERP) difference between familiar and new images was observed for the trained but not for the untrained group. These results show that briefly flashed unmasked scenes can be incidentally stored in long-term memory when repeated.
Project description:Adaptation to flickering/dynamic noise improves visual acuity for briefly presented stimuli (Arnold et al., 2016). Here, we investigate whether such adaptation operates directly on our ability to see detail or by changing fixational eye movements and pupil size or by reducing visual crowding. Following earlier work, visual acuity was measured in observers who were either unadapted or who had adapted to a 60-Hz flickering noise pattern. Participants reported the orientation of a white tumbling-T target (four-alternative forced choice [4AFC], ⊤⊣⊥⊢). The target was presented for 110 ms either in isolation or flanked by randomly oriented T's (e.g., ⊣⊤⊢) followed by an isolated (+) or flanked (+++) mask, respectively. We measured fixation stability (using an infrared eye tracker) while observers performed the task (with and without adaptation). Visual acuity improved modestly (around 8.4%) for flanked optotypes following adaptation to flicker (mean, -0.038 ± 0.063 logMAR; p = 0.015; BF10 = 3.66) but did not when measured with isolated letters (mean, -0.008 ± 0.055 logMAR; p = 0.5; BF10 = 0.29). The magnitude of acuity improvement was associated with individuals' (unadapted) susceptibility to crowding (the ratio of crowded to uncrowded acuity; r = -0.58, p = 0.008, BF10 = 7.70) but to neither fixation stability nor pupil size. Confirming previous reports, flicker improved acuity for briefly presented stimuli, but we show that this was only the case for crowded letters. These improvements likely arise from attenuation of sensitivity to a transient low spatial frequency (SF) image structure (Arnold et al., 2016; Tagoh et al., 2022), which may, for example, reduce masking of high SFs by low SFs. We also suggest that this attenuation could reduce backward masking and so reduce foveal crowding.
Project description:Motion perception of briefly displayed images has been reported to be abnormal in clinical populations afflicted with schizophrenia, major depression, autism, Alzheimer's disease and epilepsy. These abnormalities have been measured using CRT monitors connected to a computer. Given that the use of this experimental set-up in clinical environments can be difficult, we tested whether motion perception of briefly displayed images could also be measured using a tablet. For 13 participants, we found similar estimates of motion discrimination on a tablet and a CRT. This validates a tablet to measure motion perception of briefly displayed images.
Project description:It is unknown to what extent briefly presented emotional words can be processed without awareness. By means of two independent functional magnetic resonance imaging studies, using either a block or an event-related design, we investigated brain activation to very briefly presented threat related and neutral words during two backward masking conditions (with and without gap between target and mask). In both experiments, emotional words were perceived during the supraliminal "with gap" condition, but they were not recognized during the subliminal "without gap" condition, as indicated by signal detection theory analysis. Imaging results of both experiments showed increased activation of the amygdala, the medial prefrontal cortex and language-processing cortical areas to negative versus neutral words during supraliminal but not subliminal conditions. These results suggest that even very briefly presented emotional words are capable of triggering increased cortical and subcortical processing; however, only when awareness of these stimuli is given.
Project description:Napping is a useful countermeasure to the negative effects of acute sleep loss on alertness. The efficacy of naps to recover from chronic sleep loss is less well understood. Following 2 baseline nights (10 hours' time-in-bed), participants were restricted to 7 nights of 5-hour sleep opportunity. Ten adults participated in the No-Nap condition, and a further 9 were assigned to a Nap condition with a daily 45-minute nap opportunity at 1300 h. Sleepiness was assessed using the multiple sleep latency test and a visual analogue scale at 2-hour intervals. Both objective and subjective indexes of sleepiness were normalized within subject as a difference from those at baseline prior to sleep restriction. Mixed-effects models examined how the daytime nap opportunity altered sleepiness across the day and across the protocol. Short daytime naps attenuated sleepiness due to chronic sleep restriction for up to 6-8 hours after the nap. Benefits of the nap did not extend late into evening. Subjective sleepiness demonstrated a similar short-lived benefit that emerged later in the day when objective sleepiness already returned to pre-nap levels. Neither measure showed a benefit of the nap the following morning after the subsequent restriction night. These data indicate a short daytime nap may attenuate sleepiness in chronic sleep restriction, yet subjective and objective benefits emerge at different time scales. Because neither measure showed a benefit the next day, the current study underscores the need for careful consideration before naps are used as routine countermeasures to chronic sleep loss.
Project description:Individual differences in memory performance in a domain of expertise have traditionally been accounted for by previously acquired chunks of knowledge and patterns. These accounts have been examined experimentally mainly in chess. The role of chunks (clusters of chess pieces recalled in rapid succession during recall of chess positions) and their relations to chess skill are, however, under debate. By introducing an independent chunk-identification technique, namely repeated-recall technique, this study identified individual chunks for particular chess players. The study not only tested chess players with increasing chess expertise, but also tested non-chess players who should not have previously acquired any chess related chunks in memory. For recall of game positions significant differences between players and non-players were found in virtually all the characteristics of chunks recalled. Size of the largest chunks also correlates with chess skill within the group of rated chess players. Further research will help us understand how these memory encodings can explain large differences in chess skill.
Project description:Politically oriented "fake news"-false stories or headlines created to support or attack a political position or person-is increasingly being shared and believed on social media. Many online platforms have taken steps to address this by adding a warning label to articles identified as false, but past research has shown mixed evidence for the effectiveness of such labels, and many prior studies have looked only at either short-term impacts or non-political information. This study tested three versions of fake news labels with 541 online participants in a two-wave study. A warning that came before a false headline was initially very effective in both discouraging belief in false headlines generally and eliminating a partisan congruency effect (the tendency to believe politically congenial information more readily than politically uncongenial information). In the follow-up survey two weeks later, however, we found both high levels of belief in the articles and the re-emergence of a partisan congruency effect in all warning conditions, even though participants had known just two weeks ago the items were false. The new pre-warning before the headline showed some small improvements over other types, but did not stop people from believing the article once seen again without a warning. This finding suggests that warnings do have an important immediate impact and may work well in the short term, though the durability of that protection is limited.
Project description:At the interface between scene perception and speech production, we investigated how rapidly action scenes can activate semantic and lexical information. Experiment 1 examined how complex action-scene primes, presented for 150 ms, 100 ms, or 50 ms and subsequently masked, influenced the speed with which immediately following action-picture targets are named. Prime and target actions were either identical, showed the same action with different actors and environments, or were unrelated. Relative to unrelated primes, identical and same-action primes facilitated naming the target action, even when presented for 50 ms. In Experiment 2, neutral primes assessed the direction of effects. Identical and same-action scenes induced facilitation but unrelated actions induced interference. In Experiment 3, written verbs were used as targets for naming, preceded by action primes. When target verbs denoted the prime action, clear facilitation was obtained. In contrast, interference was observed when target verbs were phonologically similar, but otherwise unrelated, to the names of prime actions. This is clear evidence for word-form activation by masked action scenes. Masked action pictures thus provide conceptual information that is detailed enough to facilitate apprehension and naming of immediately following scenes. Masked actions even activate their word-form information-as is evident when targets are words. We thus show how language production can be primed with briefly flashed masked action scenes, in answer to long-standing questions in scene processing.
Project description:Active sensing animals such as echolocating bats produce the energy with which they probe their environment. The intense echolocation calls of bats are energetically expensive, but their cost can be reduced by synchronizing the exhalations needed to vocalize to wingbeats. Here, we use sound-and-movement recording tags to investigate how wild bats balance efficient sound production with information needs during foraging and navigation. We show that wild bats prioritize energy efficiency over sensory flow when periodic snapshots of the acoustic scene are sufficient during travel and search. Rapid calls during tracking and interception of close prey are decoupled from the wingbeat but are weaker and comprise <2% of all calls during a night of hunting. The limited use of fast sonar sampling provides bats with high information update rates during critical hunting moments but adds little to their overall costs of sound production despite the inefficiency of decoupling calls from wingbeats.
Project description:BackgroundTransient expression of proteins in mammalian cells is a key technique for many functional and structural studies of human and higher eukaryotic genes as well as for the production of recombinant protein therapeutics. Maximizing the expression efficiency to achieve a higher expression yield is desirable and may be even critical when, for instance, an expressed protein must be characterized at the single-cell level.New methodsOur goal was to develop a simple method by which protein expression yield in human embryonic kidney (HEK)-293 cells could be enhanced with a brief treatment of dimethyl sulfoxide (DMSO) solution.ResultsBy expressing green fluorescent protein (GFP) as a reporter protein using the calcium phosphate transfection method and imaging a large population of cells, we found that a 5-min exposure of 10 % DMSO to HEK-293 cells, 4 h after transfection of the protein of interest, leads to ∼1.6-fold increase in the expression yield without causing any appreciable cytotoxicity. By expressing an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and separately a kainate receptor in HEK-293 cells and measuring glutamate-induced whole-cell current response, we also found that such a brief DMSO treatment did not affect channel activity.ConclusionThis method is simple, efficient and inexpensive to use for enhancing transient transfection yield in HEK-293 cells.