Project description:[reaction: see text] An enantioselective gram-scale synthesis of a key dihydroindolizine intermediate for the preparation of myrmicarin alkaloids is described. Key transformations in this convergent approach include a stereospecific palladium-catalyzed N-vinylation of a pyrrole with a vinyl triflate, a copper-catalyzed enantioselective conjugate reduction of a beta-pyrrolyl enoate, and a regioselective Friedel-Crafts reaction. The synthesis of optically active and isomerically pure samples of (4aR)-myrmicarins 215A, 215B, and 217 in addition to their respective C4a-epimers is presented.
Project description:A unified strategy for enantioselective total synthesis of all stereoisomers of the 2+2 family of quadrigemine alkaloids is reported. In this approach, two enantioselective intramolecular Heck reactions are carried out at the same time on precursors fashioned in four steps from either meso- or (+)-chimonanthine to form the two critical quaternary carbons of the peripheral cyclotryptamine rings of these products. Useful levels of catalyst control are realized in either desymmetrizing a meso precursor or controlling diastereoselectivity in elaborating C2-symmetic intermediates. None of the synthetic quadrigemines are identical with alkaloids isolated previously and referred to as quadrigemines A and E. In addition, we report improvements in our previous total syntheses of (+)- or (-)-quadrigemine C that shortened the synthetic sequence to 10 steps and provided these products in 2.2% overall yield from tryptamine.
Project description:We report a concise, enantioselective synthesis of the yohimbine alkaloids (-)-rauwolscine and (-)-alloyohimbane. The key transformation involves a highly enantio- and diastereoselective NHC-catalyzed dimerization and an amidation/N-acyliminium ion cyclization sequence to furnish four of the five requisite rings and three of the five stereocenters in two operations. This route also provides efficient access to all four diastereomeric arrangements of the core stereotriad of the yohimbine alkaloids from a common intermediate. This platform approach in combination with the ability to access both enantiomers from the carbene-catalyzed reaction is a powerful strategy that can produce a wide range of complex alkaloids and related structures for future biomedical investigations.
Project description:We report an efficient and highly stereoselective strategy for the synthesis of Aspidosperma alkaloids based on the transannular cyclization of a chiral lactam precursor. Three new stereocenters are formed in this key step with excellent diastereoselectivity due to the conformational bias of the cyclization precursor, leading to a versatile pentacyclic intermediate. A subsequent stereoselective epoxidation followed by a mild formamide reduction enabled the first total synthesis of the Aspidosperma alkaloids (-)-mehranine and (+)-(6S,7S)-dihydroxy-N-methylaspidospermidine. A late-stage dimerization of (-)-mehranine mediated by scandium trifluoromethanesulfonate completed the first total synthesis of (-)-methylenebismehranine.
Project description:Synthesis of a C(15)-desmethyl tricycle core of lycopodine has been accomplished. Key steps in the synthetic sequence include organocatalytic, intramolecular Michael addition of a keto sulfone and a tandem 1,3-sulfonyl shift/Mannich cyclization to construct the tricyclic core ring system. Synthetic work toward this natural product family led to the development of N-(p-dodecylphenylsulfonyl)-2-pyrrolidinecarboxamide, an organocatalyst which facilitates enantioselective, intramolecular Michael additions. A detailed mechanistic discussion is provided for both the intramolecular Michael addition and the sulfone rearrangement. Finally, the application of these discoveries to the enantioselective total synthesis of alkaloid lycopodine is described.
Project description:Enantioselective syntheses of the alkaloids (-)-aurantioclavine, (+)-amurensinine, (-)-lobeline, and (-)- and (+)-sedamine are described. The syntheses demonstrate the effectiveness of the Pd-catalyzed asymmetric oxidation of secondary alcohols in diverse contexts and the ability of this methodology to set the absolute configuration of multiple stereocenters in a single operation. The utility of an aryne C-C insertion reaction in accessing complex polycyclic frameworks is also described.
Project description:Nitrogen heterocycles (azacycles) are common structural motifs in numerous pharmaceuticals, agrochemicals, and natural products. Many powerful methods have been developed and continue to be advanced for the selective installation and modification of nitrogen heterocycles through C-H functionalization and C-C cleavage approaches, revealing new strategies for the synthesis of targets containing these structural entities. Here, we report the first total syntheses of the lycodine-type Lycopodium alkaloids casuarinine H, lycoplatyrine B, lycoplatyrine A, and lycopladine F as well as the total synthesis of 8,15-dihydrohuperzine A through bioinspired late-stage diversification of a readily accessible common precursor, N-desmethyl-β-obscurine. Key steps in the syntheses include oxidative C-C bond cleavage of a piperidine ring in the core structure of the obscurine intermediate and site-selective C-H borylation of a pyridine nucleus to enable cross-coupling reactions.
Project description:An account of the total synthesis of the tetracyclic alkaloid (-)-acutumine is presented. A first-generation approach to the spirocyclic subunit was unsuccessful as a result of incorrect regioselectivity in a radical cyclization. However, this work spawned a second-generation strategy in which the spirocycle was fashioned via a radical-polar crossover reaction. This process merged an intramolecular radical conjugate addition with an enolate hydroxylation and created two stereocenters with excellent diastereoselectivity. The reaction was promoted by irradiation with a sunlamp, and a ditin reagent was required for aryl radical formation. These facts suggest that the substrate may function as a sensitizer, thereby facilitating homolytic cleavage of the ditin reagent. The propellane motif of the target was then installed via annulation of a pyrrolidine ring onto the spirocycle. The sequence of reactions used included a phenolic oxidation, an asymmetric ketone allylation mediated by Nakamura's chiral allylzinc reagent, an anionic oxy-Cope rearrangement, a one-pot ozonolysis-reductive amination, and a Lewis acid promoted cyclization of an amine onto an alpha,beta-unsaturated dimethyl ketal. Further studies of the asymmetric ketone allylation demonstrated the ability of the Nakamura reagent to function well in a mismatched situation. A TiCl(4)-catalyzed regioselective methyl enol etherification of a 1,3-diketone completed the synthesis.
Project description:Chemical transformations that rapidly and efficiently construct a high level of molecular complexity in a single step are perhaps the most valuable in total synthesis. Among such transformations is the transition metal catalyzed [2 + 2 + 2] cycloisomerization reaction, which forges three new C-C bonds and one or more rings in a single synthetic operation. We report here a strategy that leverages this transformation to open de novo access to the Veratrum family of alkaloids. The highly convergent approach described herein includes (i) the enantioselective synthesis of a diyne fragment containing the steroidal A/B rings, (ii) the asymmetric synthesis of a propargyl-substituted piperidinone (F ring) unit, (iii) the high-yielding union of the above fragments, and (iv) the intramolecular [2 + 2 + 2] cycloisomerization reaction of the resulting carbon framework to construct in a single step the remaining three rings (C/D/E) of the hexacyclic cevanine skeleton. Efficient late-stage maneuvers culminated in the first total synthesis of heilonine (1), achieved in 21 steps starting from ethyl vinyl ketone.
Project description:A catalytic, enantioselective synthesis of (+)-reserpine is reported. The route features a highly diastereoselective, chiral catalyst-controlled formal aza-Diels-Alder reaction between a 6-methoxytryptamine-derived dihydro-β-carboline and an enantioenriched α-substituted enone to form a key tetracyclic intermediate. This approach addresses the challenge of setting the C3 stereogenic center by using catalyst control. Elaboration of the tetracycle to (+)-reserpine includes an intramolecular aldol cyclization and a highly diastereoselective hydrogenation of a sterically hindered enoate.