On-plate desalting and SALDI-MS analysis of peptides with hydrophobic silicate nanofilms on a gold substrate.
Ontology highlight
ABSTRACT: We report the use of silicate nanofilms for on-plate desalting and subsequently direct laser desorption/ionization-mass spectrometric (LDI-MS) analysis of peptides. A hydrophobic octadecyltrichlorosilane (OTS) monolayer is formed on a calcinated nanofilm on a gold substrate to facilitate sample deposition and interaction with the surface that allows effective removal of MS-incompatible contaminants such as salts and surfactants by simple on-plate washing while the peptides are retained on the spot. By elimination of interferences from matrix-related ions and contaminants, sensitivity of MS analysis has been enhanced over ca. 20 times, leading to improved detection of peptides at the low-femtomolar level. A high recovery rate of the peptides is obtained by using relatively rough nanofilms, which are prepared through a modified layer-by-layer deposition/calcination process. The performance of the films has been investigated with peptide samples in the presence of high salts (NaCl and sodium acetate) and urea. Compared to matrix-assisted laser desorption/ionization analysis with CHCA matrix, LDI with on-plate desalting offers marked improvement for analysis of peptides due to low background ions and reduction of sample complexity. Additionally, selective capture of the hydrophobic components of a protein can be achieved, providing a highly useful strategy for specific peptide enrichment. LDI with on-plate desalting approach has also been successfully applied to peptide analysis from protein digests.
SUBMITTER: Duan J
PROVIDER: S-EPMC3022020 | biostudies-literature | 2010 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA