Project description:The formation of amyloid fibrils is associated with many serious diseases as well as diverse biological functions. Despite the importance of these aggregates, predicting the aggregation propensity of a particular sequence is a major challenge. We report a joint 2D nuclear magnetic resonance (NMR) and ultraviolet (2DUV) study of fibrillization in the wild-type and two aggregation-prone mutants of the eye lens protein ?S-crystallin. Simulations show that the complexity of 2DUV signals as measured by their "approximate entropy" is a good indicator for the conformational entropy and in turn is strongly correlated with its aggregation propensity. These findings are in agreement with high-resolution NMR experiments and are corroborated for amyloid fibrils. The 2DUV technique is complementary to high-resolution structural methods and has the potential to make the evaluation of the aggregation propensity for protein variant propensity of protein structure more accessible to both theory and experiment. The approximate entropy of experimental 2DUV signals can be used for fast screening, enabling identification of variants with high fibrillization propensity for the much more time-consuming NMR structural studies, potentially expediting the characterization of protein variants associated with cataract and other protein aggregation diseases.
Project description:The molecular mechanism of fibrillation is an important issue for understanding peptide aggregation. In our previous work, we demonstrated that the interchain attraction and intrachain bending stiffness control the aggregation kinetics and transient aggregate morphologies of a one-bead-per-residue implicit solvent peptide model. However, that model did not lead to fibrillation. In this work, we study the molecular origin of fibril formation using a two-beads-per-residue model, where one bead represents the backbone residue atoms and the other the side chain atoms. We show that the side chain geometry determines the fibrillation propensity that is further modulated by the modified terminal beads. This allows us to bring out the effects of side chain geometry and terminal capping on the fibrillation propensity. Our model does not assume a secondary structure and is, perhaps, the simplest bead-based chain model leading to fibrillation.
Project description:Revealing the structure and aggregation mechanism of amyloid fibrils is essential for the treatment of over 20 diseases related to protein misfolding. Coherent two-dimensional (2D) infrared spectroscopy is a novel tool that provides a wealth of new insight into the structure and dynamics of biomolecular systems. Recently developed ultrafast laser sources are extending multidimensional spectroscopy into the ultraviolet (UV) region, and this opens up new opportunities for probing fibrils. In a simulation study, we show that 2DUV spectra of the backbone of a 32-residue β-amyloid (Aβ(9-40)) fibril associated with Alzheimer's disease and two intermediate prefibrillar structures carry characteristic signatures of fibril size and geometry that could be used to monitor its formation kinetics. The dependence of these signals on the fibril size and geometry is explored. We demonstrate that the dominant features of the β-amyloid fibril spectra are determined by intramolecular interactions within a single Aβ(9-40), and intermolecular interactions at the "external interface" have clear signatures in the fine details of these signals.
Project description:A fully quantitative theory of the relationship between protein conformation and optical spectroscopy would facilitate deeper insights into biophysical and simulation studies of protein dynamics and folding. In contrast to intense bands in the far-ultraviolet, near-UV bands are much weaker and have been challenging to compute theoretically. We report some advances in the accuracy of calculations in the near-UV, which were realised through the consideration of the vibrational structure of the electronic transitions of aromatic side chains.
Project description:The function of protein relies on their folding to assume the proper structure. Probing the structural variations during the folding process is crucial for understanding the underlying mechanism. We present a combined quantum mechanics/molecular dynamics simulation study that demonstrates how coherent resonant nonlinear ultraviolet spectra can be used to follow the fast folding dynamics of a mini-protein, Trp-cage. Two dimensional ultraviolet signals of the backbone transitions carry rich information of both local (secondary) and global (tertiary) structures. The complexity of signals decreases as the conformational entropy decreases in the course of the folding process. We show that the approximate entropy of the signals provides a quantitative marker of protein folding status, accessible by both theoretical calculations and experiments.
Project description:Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of plaque deposits in the human brain. The main component of these plaques consists of highly ordered structures called amyloid fibrils, formed by the amyloid β-peptide (Aβ). The mechanism connecting Aβ and AD is yet undetermined. In a previous study, a coarse-grained united-residue model and molecular dynamics simulations were used to model the growth mechanism of Aβ amyloid fibrils. On the basis of these simulations, a dock/lock mechanism was proposed, in which Aβ fibrils grow by adding monomers at either end of an amyloid fibril template. To examine the structures in the early time-scale formation and growth of amyloid fibrils, simulated two-dimensional ultraviolet spectroscopy is used. These early structures are monitored in the far ultraviolet regime (λ = 190-250 nm) in which the computed signals originate from the backbone nπ* and ππ* transitions. These signals show distinct cross-peak patterns that can be used, in combination with molecular dynamics, to monitor local dynamics and conformational changes in the secondary structure of Aβ-peptides. The protein geometry-correlated chiral xxxy signal and the non-chiral combined signal xyxy-xyyx were found to be sensitive to, and in agreement with, a dock/lock pathway.
Project description:Amide n-pi* and pi-pi* excitations around 200 nm are prominent spectroscopic signatures of the protein backbone, which are routinely used in ultraviolet (UV) circular dichroism for structure characterization. Recently developed ultrafast laser sources may be used to extend these studies to two dimensions. We apply a new algorithm for modeling protein electronic transitions to simulate two-dimensional UV photon echo signals in this regime and to identify signatures of protein backbone secondary (and tertiary) structure. Simulated signals for a set of globular and fibrillar proteins and their specific regions reveal characteristic patterns of helical and sheet secondary structures. We investigate how these patterns vary and converge with the size of the structural motif. Specific chiral polarization configurations of the UV pulses are found to be sensitive to aspects of the protein structure. This information significantly augments that available from linear circular dichroism.
Project description:Due to the diversity of molecular building blocks, the two-dimensional (2D) metal-organic frameworks (MOFs) are ideal platforms to realize exotic lattice models in condensed matter theory. In this work, we demonstrate the universal existence of topological corner states in 2D MOFs with a star lattice configuration, and confirm the intriguing higher-order nontrivial topology in the energy window between two Kagome-bands, or between Dirac-band and four-band. Furthermore, combining first-principles calculations and scanning tunneling microscopy measurements, the unique topological corner state is directly identified in monolayer Ni3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) grown on the Au(111) substrate. Our results not only illustrate the first organic topological state in the experiments, but also offer an exciting opportunity to study higher-order topology in 2D MOFs with the large insulating band gap.
Project description:Ionic-liquid gating (ILG) is able to enhance carrier densities well above the achievable values in traditional field-effect transistors (FETs), revealing it to be a promising technique for exploring the electronic phases of materials in extreme doping regimes. Due to their chemical stability, transition metal dichalcogenides (TMDs) are ideal candidates to produce ionic-liquid-gated FETs. Furthermore, as recently discovered, ILG can be used to obtain the band gap of two-dimensional semiconductors directly from the simple transfer characteristics. In this work, we present an overview of the operation principles of ionic liquid gating in TMD-based transistors, establishing the importance of the reference voltage to obtain hysteresis-free transfer characteristics, and hence, precisely determine the band gap. We produced ILG-based bilayer WSe2 FETs and demonstrated their ambipolar behavior. We estimated the band gap directly from the transfer characteristics, demonstrating the potential of ILG as a spectroscopy technique.