Project description:Usher syndrome is a genetically heterogeneous recessive disease characterized by hearing loss and retinitis pigmentosa (RP). It frequently presents with unexplained, often intrafamilial, variability of the visual phenotype. Although 9 genes have been linked with Usher syndrome, many patients do not have mutations in any of these genes, suggesting that there are still unidentified genes involved in the syndrome. Here, we have determined that mutations in PDZ domain-containing 7 (PDZD7), which encodes a homolog of proteins mutated in Usher syndrome subtype 1C (USH1C) and USH2D, contribute to Usher syndrome. Mutations in PDZD7 were identified only in patients with mutations in other known Usher genes. In a set of sisters, each with a homozygous mutation in USH2A, a frame-shift mutation in PDZD7 was present in the sister with more severe RP and earlier disease onset. Further, heterozygous PDZD7 mutations were present in patients with truncating mutations in USH2A, G protein-coupled receptor 98 (GPR98; also known as USH2C), and an unidentified locus. We validated the human genotypes using zebrafish, and our findings were consistent with digenic inheritance of PDZD7 and GPR98, and with PDZD7 as a retinal disease modifier in patients with USH2A. Pdzd7 knockdown produced an Usher-like phenotype in zebrafish, exacerbated retinal cell death in combination with ush2a or gpr98, and reduced Gpr98 localization in the region of the photoreceptor connecting cilium. Our data challenge the view of Usher syndrome as a traditional Mendelian disorder and support the reclassification of Usher syndrome as an oligogenic disease.
Project description:PURPOSE. To determine the disease course in Usher syndrome type IB (USH1B) caused by myosin 7A (MYO7A) gene mutations. METHODS. USH1B patients (n = 33, ages 2-61) representing 25 different families were studied by ocular examination, kinetic and chromatic static perimetry, dark adaptometry, and optical coherence tomography (OCT). Consequences of the mutant alleles were predicted. RESULTS. All MYO7A patients had severely abnormal ERGs, but kinetic fields revealed regional patterns of visual loss that suggested a disease sequence. Rod-mediated vision could be lost to different degrees in the first decades of life. Cone vision followed a more predictable and slower decline. Central vision ranged from normal to reduced in the first four decades of life and thereafter was severely abnormal. Dark adaptation kinetics was normal. Photoreceptor layer thickness in a wide region of central retina could differ dramatically between patients of comparable ages; and there were examples of severe losses in childhood as well as relative preservation in patients in the third decade of life. Comparisons were made between the mutant alleles in mild versus more severe phenotypes. CONCLUSIONS. A disease sequence in USH1B leads from generally full but impaired visual fields to residual small central islands. At most disease stages, there was preserved temporal peripheral field, a potential target for early phase clinical trials of gene therapy. From data comparing patients' rod disease in this cohort, the authors speculate that null MYO7A alleles could be associated with milder dysfunction and fewer photoreceptor structural losses at ages when other genotypes show more severe phenotypes.
Project description:Deafness is the most frequent sensory disorder. With over 90 genes and 110 loci causally implicated in non-syndromic hearing loss, it is phenotypically and genetically heterogeneous. Here, we investigate the genetic etiology of deafness in four families of Iranian origin segregating autosomal recessive non-syndromic hearing loss (ARNSHL). We used a combination of linkage analysis, homozygosity mapping, and a targeted genomic enrichment platform to simultaneously screen 90 known deafness-causing genes for pathogenic variants. Variant segregation was confirmed by Sanger sequencing. Linkage analysis and homozygosity mapping showed segregation with the DFNB57 locus on chromosome 10 in two families. Targeted genomic enrichment with massively parallel sequencing identified causal variants in PDZD7: a homozygous missense variant (p.Gly103Arg) in one family and compound heterozygosity for missense (p.Met285Arg) and nonsense (p.Tyr500Ter) variants in the second family. Screening of two additional families identified two more variants: (p.Gly228Arg) and (p.Gln526Ter). Variant segregation with the hearing loss phenotype was confirmed in all families by Sanger sequencing. The missense variants are predicted to be deleterious, and the two nonsense mutations produce null alleles. This report is the first to show that mutations in PDZD7 cause ARNSHL, a finding that offers addition insight into the USH2 interactome. We also describe a novel likely disease-causing mutation in CIB2 and illustrate the complexity associated with gene identification in diseases that exhibit large genetic and phenotypic heterogeneity.
Project description:Usher syndrome is the leading cause of genetic deaf-blindness. Monoallelic mutations in PDZD7 increase the severity of Usher type II syndrome caused by mutations in USH2A and GPR98, which respectively encode usherin and GPR98. PDZ domain-containing 7 protein (PDZD7) is a paralog of the scaffolding proteins harmonin and whirlin, which are implicated in Usher type 1 and type 2 syndromes. While usherin and GPR98 have been reported to form hair cell stereocilia ankle-links, harmonin localizes to the stereocilia upper tip-link density and whirlin localizes to both tip and ankle-link regions. Here, we used mass spectrometry to show that PDZD7 is expressed in chick stereocilia at a comparable molecular abundance to GPR98. We also show by immunofluorescence and by overexpression of tagged proteins in rat and mouse hair cells that PDZD7 localizes to the ankle-link region, overlapping with usherin, whirlin, and GPR98. Finally, we show in LLC-PK1 cells that cytosolic domains of usherin and GPR98 can bind to both whirlin and PDZD7. These observations are consistent with PDZD7 being a modifier and candidate gene for USH2, and suggest that PDZD7 is a second scaffolding component of the ankle-link complex.
Project description:Usher syndrome type 2 (USH2) is the predominant form of USH, a leading genetic cause of combined deafness and blindness. PDZD7, a paralog of two USH causative genes, USH1C and USH2D (WHRN), was recently reported to be implicated in USH2 and non-syndromic deafness. It encodes a protein with multiple PDZ domains. To understand the biological function of PDZD7 and the pathogenic mechanism caused by PDZD7 mutations, we generated and thoroughly characterized a Pdzd7 knockout mouse model. The Pdzd7 knockout mice exhibit congenital profound deafness, as assessed by auditory brainstem response, distortion product otoacoustic emission and cochlear microphonics tests, and normal vestibular function, as assessed by their behaviors. Lack of PDZD7 leads to the disorganization of stereocilia bundles and a reduction in mechanotransduction currents and sensitivity in cochlear outer hair cells. At the molecular level, PDZD7 determines the localization of the USH2 protein complex, composed of USH2A, GPR98 and WHRN, to ankle links in developing cochlear hair cells, likely through its direct interactions with these three proteins. The localization of PDZD7 to the ankle links of cochlear hair bundles also relies on USH2 proteins. In photoreceptors of Pdzd7 knockout mice, the three USH2 proteins largely remain unchanged at the periciliary membrane complex. The electroretinogram responses of both rod and cone photoreceptors are normal in knockout mice at 1 month of age. Therefore, although the organization of the USH2 complex appears different in photoreceptors, it is clear that PDZD7 plays an essential role in organizing the USH2 complex at ankle links in developing cochlear hair cells. GenBank accession numbers: KF041446, KF041447, KF041448, KF041449, KF041450, KF041451.
Project description:Digenic Alport syndrome refers to the inheritance of pathogenic variants in COL4A5 plus COL4A3 or COL4A4 or in COL4A3 plus COL4A4 Where digenic Alport syndrome includes a pathogenic COL4A5 variant, the consequences depend on the sex of the affected individual, COL4A5 variant "severity," and the nature of the COL4A3 or COL4A4 change. A man with a pathogenic COL4A5 variant has all his collagen IV α3α4α5-heterotrimers affected, and an additional COL4A3 or COL4A4 variant may not worsen disease. A woman with a pathogenic COL4A5 variant has on average 50% of her heterotrimers affected, which is increased to 75% with a further COL4A3 or COL4A4 variant and associated with a higher risk of proteinuria. In digenic Alport syndrome with pathogenic COL4A3 and COL4A4 variants, 75% of the heterotrimers are affected. The COL4A3 and COL4A4 genes occur head-to-head on chromosome 2, and inheritance is autosomal dominant when both variants affect the same chromosome (in cis) or recessive when they affect different chromosomes (in trans). This form of digenic disease results in increased proteinuria and a median age of kidney failure intermediate between autosomal dominant and autosomal recessive Alport syndrome. Previous guidelines have suggested that all pathogenic or likely pathogenic digenic variants should be identified and reported. Affected family members should be identified, treated, and discouraged from kidney donation. Inheritance within a family is easier to predict if the two variants are considered independently and if COL4A3 and COL4A4 variants are known to be inherited on the same or different chromosomes.
Project description:Usher syndrome (USH) is the leading genetic cause of combined hearing and vision loss. Among the three USH clinical types, type 2 (USH2) occurs most commonly. USH2A, GPR98, and WHRN are three known causative genes of USH2, whereas PDZD7 is a modifier gene found in USH2 patients. The proteins encoded by these four USH genes have been proposed to form a multiprotein complex, the USH2 complex, due to interactions found among some of these proteins in vitro, their colocalization in vivo, and mutual dependence of some of these proteins for their normal in vivo localizations. However, evidence showing the formation of the USH2 complex is missing, and details on how this complex is formed remain elusive. Here, we systematically investigated interactions among the intracellular regions of the four USH proteins using colocalization, yeast two-hybrid, and pull-down assays. We show that multiple domains of the four USH proteins interact among one another. Importantly, both WHRN and PDZD7 are required for the complex formation with USH2A and GPR98. In this USH2 quaternary complex, WHRN prefers to bind to USH2A, whereas PDZD7 prefers to bind to GPR98. Interaction between WHRN and PDZD7 is the bridge between USH2A and GPR98. Additionally, the USH2 quaternary complex has a variable stoichiometry. These findings suggest that a non-obligate, short term, and dynamic USH2 quaternary protein complex may exist in vivo. Our work provides valuable insight into the physiological role of the USH2 complex in vivo and informs possible reconstruction of the USH2 complex for future therapy.
Project description:There is an emblematic clinical and genetic heterogeneity associated with inherited retinal diseases (IRDs). The most common form is retinitis pigmentosa (RP), a rod-cone dystrophy caused by pathogenic variants in over 80 different genes. Further complexifying diagnosis, different variants in individual RP genes can also alter the clinical phenotype. USH2A is the most prevalent gene for autosomal-recessive RP and one of the most challenging because of its large size and, hence, large number of variants. Moreover, USH2A variants give rise to non-syndromic and syndromic RP, known as Usher syndrome (USH) type 2, which is associated with vision and hearing loss. The lack of a clear genotype-phenotype correlation or prognostic models renders diagnosis highly challenging. We report here a long-awaited differential non-syndromic RP and USH phenotype in three human disease-specific models: fibroblasts, induced pluripotent stem cells (iPSCs), and mature iPSC-derived retinal organoids. Moreover, we identified distinct retinal phenotypes in organoids from multiple RP and USH individuals, which were validated by isogenic-corrected controls. Non-syndromic RP organoids showed compromised photoreceptor differentiation, whereas USH organoids showed a striking and unexpected cone phenotype. Furthermore, complementary clinical investigations identified macular atrophy in a high proportion of USH compared with RP individuals, further validating our observations that USH2A variants differentially affect cones. Overall, identification of distinct non-syndromic RP and USH phenotypes in multiple models provides valuable and robust readouts for testing the pathogenicity of USH2A variants as well as the efficacy of therapeutic approaches in complementary cell types.