Project description:Exercising fine control over the synthesis of metal-organic frameworks (MOFs) is key to ensuring reproducibility of physical properties such as crystallinity, particle size, morphology, porosity, defectivity, and surface chemistry. The principle of modulated self-assembly - incorporation of modulator molecules into synthetic mixtures - has emerged as the primary means to this end. This perspective article will detail the development of modulated synthesis, focusing primarily on coordination modulation, from a technique initially intended to cap the growth of MOF crystals to one that is now used regularly to enhance crystallinity, control particle size, induce defectivity and select specific phases. The various mechanistic driving forces will be discussed, as well as the influence of modulation on physical properties and how this can facilitate potential applications. Modulation is also increasingly being used to exert kinetic control over self-assembly; examples of phase selection and the development of new protocols to induce this will be provided. Finally, the application of modulated self-assembly to alternative materials will be discussed, and future perspectives on the area given.
Project description:Four lanthanide-based homochiral metal-organic frameworks (Ln-HMOFs), {[Ln2(HL)2(H2O)4]·2Cl·5H2O} n [Ln = Gd (1), Eu (2), Tb (3) and Dy (4)], have been synthesized through solvothermal reactions of chiral ligand (S)-5-(((1-carboxyethyl)amino)methyl)isophthalic acid (H3L) with corresponding LnCl3·6H2O. They are binodal (3,6)-connected frameworks with kgd nets based on binuclear cluster units and zwitterionic (HL)2- linkers. Considering the isostructuralism of these Ln-HMOFs as well as the blue emission of compound 1 and the strong typical Eu3+ and Tb3+ emissions of compounds 2 and 3, single-phase mixed-lanthanide HMOFs have been prepared by doping of Ln3+ into the Ln-HMOFs to modulate light-emitting color. Interestingly, the bimetallic doped Eu/Tb-HMOFs [(Eu x Tb1-x )2(HL)2(H2O)4]·2Cl·5H2O display a fluent change of light-emitting color among green, yellow, orange, orange-red, and red by adjusting the doping concentration of Eu3+ ions into the Tb-HMOF. Very importantly, the trimetallic doped Eu/Gd/Tb-HMOF [(Eu0.1388Gd0.6108Tb0.2504)2(HL)2(H2O)4]·2Cl·5H2O emits white light upon excitation at 355 nm, whose emission can also be switched between different colors when excited with different ultraviolet light. Furthermore, the fluorescence response of Tb-HMOF to various usual metal ions, and especially fluorescent sensing behaviours to Fe3+, Cr3+ and Al3+ have been preliminarily investigated.
Project description:Currently, great interest is focused on developing auto-tandem catalytic reactions; a substrate is catalytically transferred through mechanistically distinct reactions without altering any reaction conditions. Here by incorporating a pyrrolidine moiety as a chiral organocatalyst and a polyoxometalate as an oxidation catalyst, a powerful approach is devised to achieve a tandem catalyst for the efficient conversion of CO2 into value-added enantiomerically pure cyclic carbonates. The multi-catalytic sites are orderly distributed and spatially matched in the framework. The captured CO2 molecules are synergistically fixed and activated by well-positioned pyrrolidine and amine groups, providing further compatibility with the terminal W=O activated epoxidation intermediate and driving the tandem catalytic process in a single workup stage and an asymmetric fashion. The structural simplicity of the building blocks and the use of inexpensive and readily available chemical reagents render this approach highly promising for the development of practical homochiral materials for CO2 conversion.
Project description:Immobilization of biomolecules into porous materials could lead to significantly enhanced performance in terms of stability towards harsh reaction conditions and easier separation for their reuse. Metal-Organic Frameworks (MOFs), offering unique structural features, have emerged as a promising platform for immobilizing large biomolecules. Although many indirect methods have been used to investigate the immobilized biomolecules for diverse applications, understanding their spatial arrangement in the pores of MOFs is still preliminary due to the difficulties in directly monitoring their conformations. To gain insights into the spatial arrangement of biomolecules within the nanopores. We used in situ small-angle neutron scattering (SANS) to probe deuterated green fluorescent protein (d-GFP) entrapped in a mesoporous MOF. Our work revealed that GFP molecules are spatially arranged in adjacent nanosized cavities of MOF-919 to form "assembly" through adsorbate-adsorbate interactions across pore apertures. Our findings, therefore, lay a crucial foundation for the identification of proteins structural basics under confinement environment of MOFs.
Project description:The high surface area and porosity, and limitless compound and network combinations between the metal ions and organic ligands making up metal-organic frameworks (MOFs) offer tremendous opportunities for their use in many applications. While numerous methods have been proposed for the synthesis of MOF powders, it is often difficult to obtain oriented crystals with these techniques. Further, the need for additional post-synthesis steps to activate the crystals and release them from the substrate presents a considerable production challenge. Here, we report an acoustically-driven microcentrifugation platform that facilitates fast convective solutal transport, allowing the synthesis of MOF crystals in as short as five minutes. The crystals are not only oriented due to long-range out-of-plane superlattice ordering aided by molecular dipole polarization under the acoustoelectric coupling, but also simultaneously activated during the synthesis process.
Project description:Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application.
Project description:We develop the first mechanochemical and solvent-free routes for zirconium metal-organic frameworks, making the frameworks UiO-66 and UiO-66-NH2 accessible on the gram scale without strong acids, high temperatures or excess reactants. The frameworks form either by milling, or spontaneous self-assembly by simply exposing solid mixtures of reactants to organic vapour. The generated frameworks exhibit high porosity and catalytic activity in the hydrolysis of model nerve agents, on par with their solvothermally generated counterparts.
Project description:Developing a synthetic methodology for the fabrication of hierarchically porous metal-organic monoliths that feature high surface area, low density and tunable porosity is imperative for mass transfer applications, including bulky molecule capture, heterogeneous catalysis and drug delivery. Here we report a versatile and facile synthetic route towards ultralight micro/mesoporous metal-organic aerogels based on the two-step gelation of metal-organic framework nanoparticles. Heating represents a key factor in the control of gelation versus crystallization of Al(III)-multicarboxylate systems. The porosity of the resulting metal-organic aerogels can be readily tuned, leading to the formation of well-ordered intraparticle micropores and aerogel-specific interparticle mesopores, thereby integrating the merits of both crystalline metal-organic frameworks and light aerogels. The hierarchical micro/mesoporosity of the Al-metal-organic aerogels is thoroughly evaluated by N? sorption. The good accessibility of the micro/mesopores is verified by vapour/dye uptake, and their potential for utilization as effective fibre-coating absorbents is tested in solid-phase microextraction analyses.
Project description:Mixed-halide perovskite quantum dots (PeQDs) are the most competitive candidates in designing solar cells and light-emitting devices (LEDs) due to their tunable bandgap and high-efficiency quantum yield. However, phase separation in mixed-halide perovskites under illumination can form rich iodine and bromine regions, which change its optical responses. Herein, we synthesize PeQDs combined with mesoporous zinc-based metal organic framework (MOF) crystals, which can greatly improve the stability of anti-anion exchange, including photo-, thermal, and long-term stabilities under illumination. This unique structure provides a solution for improving the performance of perovskite optoelectronic devices and stabilizing mixed-halide perovskite devices.
Project description:The post-synthetic installation of linker molecules between open-metal sites (OMSs) and undercoordinated metal-nodes in a metal-organic framework (MOF) - retrofitting - has recently been discovered as a powerful tool to manipulate macroscopic properties such as the mechanical robustness and the thermal expansion behavior. So far, the choice of cross linkers (CLs) that are used in retrofitting experiments is based on qualitative considerations. Here, we present a low-cost computational framework that provides experimentalists with a tool for evaluating various CLs for retrofitting a given MOF system with OMSs. After applying our approach to the prototypical system CL@Cu3BTC2 (BTC = 1,3,5-benzentricarboxylate) the methodology was expanded to NOTT-100 and NOTT-101 MOFs, identifying several promising CLs for future CL@NOTT-100 and CL@NOTT-101 retrofitting experiments. The developed model is easily adaptable to other MOFs with OMSs and is set-up to be used by experimentalists, providing a guideline for the synthesis of new retrofitted MOFs with modified physicochemical properties.