Ontology highlight
ABSTRACT: Background
Increased neuronal excitability and spontaneous firing are hallmark characteristics of injured sensory neurons. Changes in expression of various voltage-gated Na+ channels (VGSCs) have been observed under neuropathic conditions and there is evidence for the involvement of protein kinase C (PKC) in sensory hyperexcitability. Here we demonstrate the contribution of PKC to P2X-evoked VGSC activation in dorsal root ganglion (DRG) neurons in neuropathic conditions.Results
Using the spinal nerve ligation (SNL) model of neuropathic pain and whole-cell patch clamp recordings of dissociated DRG neurons, we examined changes in excitability of sensory neurons after nerve injury and observed that P2X3 purinoceptor-mediated currents induced by α,β-meATP triggered activation of TTX-sensitive VGSCs in neuropathic nociceptors only. Treatment of neuropathic DRGs with the PKC blocker staurosporine or calphostin C decreased the α,β-meATP-induced Na+ channels activity and reversed neuronal hypersensitivity. In current clamp mode, α,β-meATP was able to evoke action-potentials more frequently in neuropathic neurons than in controls. Pretreatment with calphostin C significantly decreased the proportion of sensitized neurons that generated action potentials in response to α,β-meATP. Recordings measuring VGSC activity in neuropathic neurons show significant change in amplitude and voltage dependence of sodium currents. In situ hybridization data indicate a dramatic increase in expression of embryonic Nav1.3 channels in neuropathic DRG neurons. In a CHO cell line stably expressing the Nav1.3 subunit, PKC inhibition caused both a significant shift in voltage-dependence of the channel in the depolarizing direction and a decrease in current amplitude.Conclusion
Neuropathic injury causes primary sensory neurons to become hyperexcitable to ATP-evoked P2X receptor-mediated depolarization, a phenotypic switch sensitive to PKC modulation and mediated by increased activity of TTX-sensitive VGSCs. Upregulation in VGSC activity after injury is likely mediated by increased expression of the Nav1.3 subunit, and the function of the Nav1.3 channel is regulated by PKC.
SUBMITTER: Mo G
PROVIDER: S-EPMC3050763 | biostudies-literature | 2011 Feb
REPOSITORIES: biostudies-literature
Molecular pain 20110211
<h4>Background</h4>Increased neuronal excitability and spontaneous firing are hallmark characteristics of injured sensory neurons. Changes in expression of various voltage-gated Na+ channels (VGSCs) have been observed under neuropathic conditions and there is evidence for the involvement of protein kinase C (PKC) in sensory hyperexcitability. Here we demonstrate the contribution of PKC to P2X-evoked VGSC activation in dorsal root ganglion (DRG) neurons in neuropathic conditions.<h4>Results</h4>U ...[more]