Unknown

Dataset Information

0

Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch.


ABSTRACT: The cortical output layer 5 contains two excitatory cell types, slender- and thick-tufted neurons. In rat vibrissal cortex, slender-tufted neurons carry motion and phase information during active whisking, but remain inactive after passive whisker touch. In contrast, thick-tufted neurons reliably increase spiking preferably after passive touch. By reconstructing the 3D patterns of intracortical axon projections from individual slender- and thick-tufted neurons, filled in vivo with biocytin, we were able to identify cell type-specific intracortical circuits that may encode whisker motion and touch. Individual slender-tufted neurons showed elaborate and dense innervation of supragranular layers of large portions of the vibrissal area (total length, 86.8 ± 5.5 mm). During active whisking, these long-range projections may modulate and phase-lock the membrane potential of dendrites in layers 2 and 3 to the whisking cycle. Thick-tufted neurons with soma locations intermingling with those of slender-tufted ones display less dense intracortical axon projections (total length, 31.6 ± 14.3 mm) that are primarily confined to infragranular layers. Based on anatomical reconstructions and previous measurements of spiking, we put forward the hypothesis that thick-tufted neurons in rat vibrissal cortex receive input of whisker motion from slender-tufted neurons onto their apical tuft dendrites and input of whisker touch from thalamic neurons onto their basal dendrites. During tactile-driven behavior, such as object location, near-coincident input from these two pathways may result in increased spiking activity of thick-tufted neurons and thus enhanced signaling to their subcortical targets.

SUBMITTER: Oberlaender M 

PROVIDER: S-EPMC3053980 | biostudies-literature | 2011 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch.

Oberlaender Marcel M   Boudewijns Zimbo S R M ZS   Kleele Tatjana T   Mansvelder Huibert D HD   Sakmann Bert B   de Kock Christiaan P J CP  

Proceedings of the National Academy of Sciences of the United States of America 20110222 10


The cortical output layer 5 contains two excitatory cell types, slender- and thick-tufted neurons. In rat vibrissal cortex, slender-tufted neurons carry motion and phase information during active whisking, but remain inactive after passive whisker touch. In contrast, thick-tufted neurons reliably increase spiking preferably after passive touch. By reconstructing the 3D patterns of intracortical axon projections from individual slender- and thick-tufted neurons, filled in vivo with biocytin, we w  ...[more]

Similar Datasets

| S-EPMC6015872 | biostudies-literature
| S-EPMC6587367 | biostudies-literature
| S-EPMC6713603 | biostudies-literature
| S-EPMC6395061 | biostudies-literature
| S-EPMC3445569 | biostudies-literature
| S-EPMC4869481 | biostudies-literature
| S-EPMC6156333 | biostudies-literature
| S-EPMC3888365 | biostudies-other
| S-EPMC3398123 | biostudies-literature
| S-EPMC5196037 | biostudies-literature