Project description:The main concern in shock and resuscitation is whether the microcirculation can carry adequate oxygen to the tissues and remove waste. Identification of an intact coherence between macro- and microcirculation during states of shock and resuscitation shows a functioning regulatory mechanism. However, loss of hemodynamic coherence between the macro and microcirculation can be encountered frequently in sepsis, cardiogenic shock, or any hemodynamically compromised patient. This loss of hemodynamic coherence results in an improvement in macrohemodynamic parameters following resuscitation without a parallel improvement in microcirculation resulting in tissue hypoxia and tissue compromise. Hand-held vital microscopes (HVMs) can visualize the microcirculation and help to diagnose the nature of microcirculatory shock. Although treatment with the sole aim of recruiting the microcirculation is as yet not realized, interventions can be tailored to the needs of the patient while monitoring sublingual microcirculation. With the help of the newly introduced software, called MicroTools, we believe sublingual microcirculation monitoring and diagnosis will be an essential point-of-care tool in managing shock patients.
Project description:A growing body of evidence exists associating depressed microcirculatory function and morbidity and mortality in a wide array of clinical scenarios. It has been suggested that volume replacement therapy using fluids and/or blood in combination with vasoactive agents to modulate macro- and microvascular perfusion might be essential for resuscitation of severely septic patients. Even after interventions effectively optimizing macrocirculatory hemodynamics, however, high mortality rates still persist in critically ill and especially in septic patients. Therefore, rather than limiting therapy to macrocirculatory targets alone, microcirculatory targets could be incorporated to potentially reduce mortality rates in these critically ill patients. In the present review we first provide a brief history of clinical imaging of the microcirculation and describe how microcirculatory imaging has been of prognostic value in intensive care patients. We then give an overview of therapies potentially improving the microcirculation in critically ill patients and propose a clinical trial aimed at demonstrating that therapy targeting improvement of the microcirculation results in improved organ function in patients with severe sepsis and septic shock. We end with some recent technological advances in clinical microcirculatory image acquisition and analysis.
Project description:Extended-infusion ceftolozane-tazobactam treatment at 1.5 g every 8 h was used to treat multidrug-resistant Pseudomonas aeruginosa in a critically ill patient on continuous venovenous hemofiltration. Serum drug concentrations were measured at 1, 4, 5, 6, and 8 h after the start of infusion. Prefilter levels of ceftolozane produced a maximum concentration of drug (Cmax) of 38.57 ?g/ml, concentration at the end of the dosing interval (Cmin) of 31.63 ?g/ml, time to Cmax (Tmax) of 4 h, area under the concentration-time curve from 0 to 8 h (AUC0-8) of 284.38 ?g · h/ml, and a half-life (t1/2) of 30.7 h. The concentrations were eight times the susceptibility breakpoint for the entire dosing interval.
Project description:ObjectivesTo determine the optimal duration of continuous EEG monitoring (CEEG) for electrographic seizure (ES) identification in critically ill children.MethodsWe performed a prospective observational cohort study of 719 consecutive critically ill children with encephalopathy. We evaluated baseline clinical risk factors (age and prior clinically evident seizures) and emergent CEEG risk factors (epileptiform discharges and ictal-interictal continuum patterns) using a multistate survival model. For each subgroup, we determined the CEEG duration for which the risk of ES was <5% and <2%.ResultsES occurred in 184 children (26%). Patients achieved <5% risk of ES after (1) 6 hours if ≥1 year without prior seizures or EEG risk factors; (2) 1 day if <1 year without prior seizures or EEG risks; (3) 1 day if ≥1 year with either prior seizures or EEG risks; (4) 2 days if ≥1 year with prior seizures and EEG risks; (5) 2 days if <1 year without prior seizures but with EEG risks; and (6) 2.5 days if <1 year with prior seizures regardless of the presence of EEG risks. Patients achieved <2% risk of ES at the same durations except patients without prior seizures or EEG risk factors would require longer CEEG (1.5 days if <1 year of age, 1 day if ≥1 year of age).ConclusionsA model derived from 2 baseline clinical risk factors and emergent EEG risk factors would allow clinicians to implement personalized strategies that optimally target limited CEEG resources. This would enable more widespread use of CEEG-guided management as a potential neuroprotective strategy.Clinicaltrialsgov identifierNCT03419260.
Project description:ObjectiveTo characterize the risk for seizures over time in relation to EEG findings in hospitalized adults undergoing continuous EEG monitoring (cEEG).MethodsRetrospective analysis of cEEG data and medical records from 625 consecutive adult inpatients monitored at a tertiary medical center. Using survival analysis methods, we estimated the time-dependent probability that a seizure will occur within the next 72-h, if no seizure has occurred yet, as a function of EEG abnormalities detected so far.ResultsSeizures occurred in 27% (168/625). The first seizure occurred early (<30min of monitoring) in 58% (98/168). In 527 patients without early seizures, 159 (30%) had early epileptiform abnormalities, versus 368 (70%) without. Seizures were eventually detected in 25% of patients with early epileptiform discharges, versus 8% without early discharges. The 72-h risk of seizures declined below 5% if no epileptiform abnormalities were present in the first two hours, whereas 16h of monitoring were required when epileptiform discharges were present. 20% (74/388) of patients without early epileptiform abnormalities later developed them; 23% (17/74) of these ultimately had seizures. Only 4% (12/294) experienced a seizure without preceding epileptiform abnormalities.ConclusionsSeizure risk in acute neurological illness decays rapidly, at a rate dependent on abnormalities detected early during monitoring. This study demonstrates that substantial risk stratification is possible based on early EEG abnormalities.SignificanceThese findings have implications for patient-specific determination of the required duration of cEEG monitoring in hospitalized patients.