Project description:Growing evidence supports the use of probiotics to prevent or mitigate obesity-related dysmetabolism and non-alcoholic fatty liver disease (NAFLD). However, frequent reports of responders versus non-responders to probiotic treatment warrant a better understanding of key modifiers of host-microbe interactions. The influence of host diet on probiotic efficacy, in particular against metabolic diseases, remains elusive. We fed C57BL6/J mice a low fat reference diet or one of two energy-matched high fat and high sucrose diets for 12 weeks; a classical high fat diet (HFD) and a customized fast food-mimicking diet (FFMD). During the studies, mice fed either obesogenic diet were gavaged daily with one of two probiotic lactic acid bacteria (LAB) strains previously classified as Lactobaccillus, namely Limosilactobacillus reuteri (L. reuteri)or Lacticaseibacillus paracaseisubsp. paracasei (L. paracasei), or vehicle. The tested probiotics exhibited a reproducible efficacy but dichotomous response according to the obesogenic diets used. Indeed, L. paracaseiprevented weight gain, improved insulin sensitivity, and protected against NAFLD development in mice fed HFD, but not FFMD. Conversely, L. reuteri improved glucoregulatory capacity, reduced NAFLD development, and increased distal gut bile acid levels associated with changes in predicted functions of the gut microbiota exclusively in the context of FFMD-feeding. We found that the probiotic efficacy of two LAB strains is highly dependent on experimental obesogenic diets. These findings highlight the need to carefully consider the confounding impact of diet in order to improve both the reproducibility of preclinical probiotic studies and their clinical research translatability.
Project description:The importance of the relative dietary content of protein, carbohydrate and the type of carbohydrate (that is, glycemic index (GI)) for weight control under ad libitum conditions has been controversial owing to the lack of large scale studies with high diet adherence. The Diet, Obesity and Genes (DioGenes) European multicentre trial examined the importance of a slight increase in dietary protein content, reduction in carbohydrate and the importance of choosing low (LGI) vs high GI (HGI) carbohydrates for weight control in 932 obese families. Only the adults underwent a diet of 800 kcal per day for 8 weeks, and after losing ~11kg they were randomized to one of five energy ad libitum diets for 6 months. The diets differed in protein content and GI. The high-protein (HP) diet groups consumed 5.4% points more energy from protein than the normal protein (NP) groups, and the LGI diet groups achieved 5.1% lower GI than the HGI groups. The effect of HP and LGI was additive on weight loss and maintenance, and the combination was successful in preventing weight regain and reducing drop-out rate among the adults after the 11kg weight loss. This diet also reduced body fatness and prevalence of overweight and obesity among their children and had consistent beneficial effects on blood pressure, blood lipids and inflammation in both parents and children. After 1 year, mainly the HP effects were maintained. Putative genes have been identified that suggest this diet to be particularly effective in 67% of the population. In conclusion, the DioGenes diet has shown to be effective for prevention of weight regain and for weight reduction in overweight children under ad libitum conditions. The less-restrictive dietary approach fits into a normal food culture, and has been translated into popular diet and cook books in several languages.
Project description:The report examines which diets are successful as therapy for overweight and obese persons. In general all considered diets are effective. Besides the food the patients have to change the kinesic behaviour and the lifestyle to achieve sustained success.
Project description:BackgroundScientists have been investigating efficient interventions to prevent and manage obesity. This network meta-analysis (NMA) compared the effect of different diets [moderate macronutrients (MMs), low fat/high carbohydrate (LFHC), high fat/low carbohydrate (HFLC), and usual diet (UD)] on weight, body mass index (BMI), and waist circumference (WC) changes at ≥12 months.MethodsWe searched Medline, Embase, PubMed databases, and the Cochrane Library. We systematically assessed randomized controlled trials (RCTs) evaluating dietary interventions on adults (mean BMI ≥ 25 kg/m2) receiving active dietary counseling for ≥12 months. We pooled the data using a random-effect NMA. We assessed the quality of the included RCTs using the Cochrane risk of bias (ROB) tool.ResultsWe included 36 trials, 14 of which compared HFLC with MM diets. Compared with UD, all diets were associated with a significant weight loss (WL) at ≥12 months, HFLC [mean difference in kg (95% CI): -5.5 (-7.6; -3.4)], LFHC [-5.0 (-7.1; -2.9)] and MM [-4.7 (-6.8; -2.7)]. HFLC, compared with MM diet, was associated with a slightly higher WL (of -0.77 kg) and drop in BMI (of -0.36 kg/m2), while no significant difference was detected in other dietary comparisons. WC was lower with all diets compared to UD, with no significant difference across specific diets. There was no significant interaction of the results with the pre-specified sub-groups. The ROB was moderate to high, mostly related to unclear allocation concealment, high dropout rate and unclear or lack of blinding of participants, providers, and outcome assessors.ConclusionDietary interventions extending over ≥12 months are superior to UD in inducing weight, BMI and WC loss. HFLC might be associated with a slightly higher WL compared with MM diets.Systematic trial registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?RecordID=103116, PROSPERO (CRD42018103116).
Project description:ObjectivesDifferent approaches for analyzing repeated dietary measurements may yield differences in the magnitude and interpretation of findings. We aimed to compare 3 dietary measurements (baseline, most recent, and cumulative average) in terms of the association between plant-based diet indices (PDIs) and incident abdominal obesity in Korean adults aged 40-69 years.MethodsThis study included 6,054 participants (54% women) free of abdominal obesity (defined as waist circumference ≥90 cm for men and ≥85 cm for women) at baseline. As exposures, baseline, most recent, and cumulative average measurements for PDI, healthy-PDI (hPDI), and unhealthy-PDI (uPDI) were created. A Cox proportional-hazard model was used to estimate the hazard ratios (HRs) for abdominal obesity.ResultsDuring 45,818 person-years of follow-up (median, 9 years), we identified 1,778 incident cases of abdominal obesity. In the multivariable-adjusted analysis, a higher uPDI was associated with a higher risk of abdominal obesity in both total and stratified analyses. The findings were consistent across all approaches (Q5 vs. Q1: HRbaseline=1.70; 95% confidence interval [CI], 1.46 to 1.98; HRmost recent=1.52; 95% CI, 1.30 to 1.78; HRcumulative average=1.76; 95% CI, 1.51 to 2.06 in the total set). PDI showed no meaningful association with abdominal obesity risk in any analyses. hPDIaverage had a suggestive inverse association with abdominal obesity risk in men, and hPDIbaseline had a positive association with abdominal obesity risk in women.ConclusionsGreater adherence to unhealthy plant-based diets may increase the risk of developing abdominal obesity in Korean adults. The findings were generally consistent across all approaches.
Project description:It is widely accepted that the intestinal microbiome is connected to obesity, as key mediator of the diet impact on the host metabolic and immunological status. To investigate whether the individual gut microbiome has a potential in predicting the onset and progression of diseases, here we characterized the faecal microbiota of 70 children in a two-time point prospective study, within a four-year window. All children had normal weight at the beginning of this study, but 36 of them gained excessive weight at the subsequent check-up. Microbiome data were analysed together with the hosts' diet information, physical activity, and inflammatory parameters. We find that the gut microbiota structures were stratified into a discrete number of groups, characterized by different biodiversity that correlates with inflammatory markers and dietary habits, regardless of age, gender, and body weight. Collectively, our data underscore the importance of the microbiome-host-diet configuration as a possible predictor of obesity.
Project description:Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis. The abundance of the Bacteroidetes/Firmicutes ratio, as Actinobacteria and Proteobacteria species are associated with increased SCFA production, reported high-fat diet rich in medium-chain fatty acids (MCFAs), monounsaturated fatty acids (MUFAs), and n-3 polyunsaturated fatty acids (PUFAs) as well as low-fat diets rich in long-chain fatty acids (LCFAs). SCFAs play a key role in health promotion and prevention and, reduction and reversion of metabolic syndromes in the host. Furthermore, in this review, we discussed the type of fatty acids and their amount, including the administration time and their interplay with gut microbiota and its results about health or several metabolic dysbioses undergone by hosts.
Project description:This study aimed to investigate the effects of a hypocaloric balanced diet (HBD) on anthropometric measures and gut microbiota of 43 people with obesity. Fecal samples were collected from the study subjects at weeks 0 and 12, and a detailed analysis of gut microbiota was performed using 16S rRNA gene sequencing. By comparing anthropometric measures and microbiota changes in subjects before and after the HBD intervention, we revealed the potential effects of HBD on weight loss and gut microbiota. Our results indicated that the HBD resulted in a significant decrease in body mass index (BMI), and most of the physiological indicators were decreased to a greater degree in the effective HBD group (EHBD, weight loss ≥ 5%) than in the ineffective HBD group (IHBD, weight loss < 5%). The HBD intervention also modified the gut microbiota of the subjects with obesity. Specifically, Blautia, Lachnoclostridium, Terrisporobacter, Ruminococcus (R. torques, R. gnavus), and Pseudomonas were significantly reduced. In addition, we employed machine learning models, such as XGBRF and GB models, to rank the importance of various features and identified the top 10 key bacterial genera involved. Gut microbiota co-occurrence networks showed the dominance of healthier microbiota following successful weight loss. These results suggested that the HBD intervention enhanced weight loss, which may be related to diet-induced changes in the gut microbiota.
Project description:HFD (high-fat diet) induces obesity and metabolic disorders, which is associated with the alteration in gut microbiota profiles. However, the underlying molecular mechanisms of the processes are poorly understood. In this study, we used the simple model organism honey bee to explore how different amounts and types of dietary fats affect the host metabolism and the gut microbiota. Excess dietary fat, especially palm oil, elicited higher weight gain, lower survival rates, hyperglycemic, and fat accumulation in honey bees. However, microbiota-free honey bees reared on high-fat diets did not significantly change their phenotypes. Different fatty acid compositions in palm and soybean oil altered the lipid profiles of the honey bee body. Remarkably, dietary fats regulated lipid metabolism and immune-related gene expression at the transcriptional level. Gene set enrichment analysis showed that biological processes, including transcription factors, insulin secretion, and Toll and Imd signaling pathways, were significantly different in the gut of bees on different dietary fats. Moreover, a high-fat diet increased the relative abundance of Gilliamella, while the level of Bartonella was significantly decreased in palm oil groups. This study establishes a novel honey bee model of studying the crosstalk between dietary fat, gut microbiota, and host metabolism.