Unknown

Dataset Information

0

Lysine-specific demethylase 2B (KDM2B)-let-7-enhancer of zester homolog 2 (EZH2) pathway regulates cell cycle progression and senescence in primary cells.


ABSTRACT: Sustained expression of the histone demethylase, KDM2B (Ndy1/FBXL10/JHDM1B), bypasses cellular senescence in primary mouse embryonic fibroblasts (MEFs). Here, we show that KDM2B is a conserved regulator of lifespan in multiple primary cell types and defines a program in which this chromatin-modifying enzyme counteracts the senescence-associated down-regulation of the EZH2 histone methyltransferase. Senescence in MEFs epigenetically silences KDM2B and induces the tumor suppressor miRNAs let-7b and miR-101, which target EZH2. Forced expression of KDM2B promotes immortalization by silencing these miRNAs through locus-specific histone H3 K36me2 demethylation, leading to EZH2 up-regulation. Overexpression of let-7b down-regulates EZH2, induces premature senescence, and counteracts immortalization of MEFs driven by KDM2B. The KDM2B-let-7-EZH2 pathway also contributes to the proliferation of immortal Ink4a/Arf null fibroblasts suggesting that, beyond its anti-senescence role in primary cells, this histone-modifying enzyme functions more broadly in the regulation of cellular proliferation.

SUBMITTER: Tzatsos A 

PROVIDER: S-EPMC3190920 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6659997 | biostudies-literature
| S-EPMC2612995 | biostudies-literature
| S-EPMC7672588 | biostudies-literature
| S-EPMC5533797 | biostudies-literature
| S-EPMC6580945 | biostudies-literature