Ontology highlight
ABSTRACT: Background
Cloning genes into plasmid vectors is one of the key steps for studying gene function. Recently, Invitrogen™ developed a convenient Gateway® cloning system based on the site-specific DNA recombination properties of bacteriophage lambda and the cytotoxic protein ccdB, which is lethal to most E. coli strains. The ccdB protein, however, is not toxic to Agrobacterium tumefaciens, an important player often used for studying gene function in planta. This limits the direct application of the Gateway® cloning system in plant transformation-mediated research.Results
In this study, we constructed a novel Gateway®-compatible destination vector, pEG101-SacB/R, by replacing the ccdB gene with a SacB-SacR gene cassette as the negative selectable marker.Conclusion
Our results demonstrate that the new pEG101-SacB/R destination vector can be used for Gateway® cloning in Agrobacterium tumefaciens. pEG101-SacB/R will be a valuable tool for high-throughput functional analysis of genes in planta.
SUBMITTER: Traore SM
PROVIDER: S-EPMC3265438 | biostudies-literature | 2011 Dec
REPOSITORIES: biostudies-literature
Traore Sy Mamadou SM Zhao Bingyu B
Plant methods 20111207 1
<h4>Background</h4>Cloning genes into plasmid vectors is one of the key steps for studying gene function. Recently, Invitrogen™ developed a convenient Gateway® cloning system based on the site-specific DNA recombination properties of bacteriophage lambda and the cytotoxic protein ccdB, which is lethal to most E. coli strains. The ccdB protein, however, is not toxic to Agrobacterium tumefaciens, an important player often used for studying gene function in planta. This limits the direct applicatio ...[more]