Project description:We describe a family with a novel, inherited AXIN2 mutation (c.1989G>A) segregating in an autosomal dominant pattern with oligodontia and variable other findings including colonic polyposis, gastric polyps, a mild ectodermal dysplasia phenotype with sparse hair and eyebrows, and early onset colorectal and breast cancers. This novel mutation predicts p.Trp663X, which is a truncated protein that is missing the last three exons, including the DIX (Disheveled and AXIN interacting) domain. This nonsense mutation is predicted to destroy the inhibitory action of AXIN2 on WNT signaling. Previous authors have described an unrelated family with autosomal dominant oligodontia and a variable colorectal phenotype segregating with a nonsense mutation of AXIN2, as well as a frameshift AXIN2 mutation in an unrelated individual with oligodontia. Our report provides additional evidence supporting an autosomal dominant AXIN2-associated ectodermal dysplasia and neoplastic syndrome.
Project description:BackgroundHypohidrotic ectodermal dysplasia (HED) is a genetic disorder characterized by defective development of teeth, hair, nails and eccrine sweat glands. Both autosomal dominant and autosomal recessive forms of HED have previously been linked to mutations in the ectodysplasin 1 anhidrotic receptor (EDAR) protein that plays an important role during embryogenesis.MethodsThe coding DNA sequence of the EDAR gene was analyzed in two large Swedish three-generational families with autosomal dominant HED.ResultsA non-sense C to T mutation in exon 12 was identified in both families. This disease-specific mutation changes an arginine amino acid in position 358 of the EDAR protein into a stop codon (p.Arg358X), thereby truncating the protein. In addition to the causative mutation two polymorphisms, not associated with the HED disorder, were also found in the EDAR gene.ConclusionThe finding of the p.Arg358X mutation in the Swedish families is the first corroboration of a previously described observation in an American family. Thus, our study strengthens the role of this particular mutation in the aetiology of autosomal dominant HED and confirms the importance of EDAR for the development of HED.
Project description:Pure hair and nail ectodermal dysplasia (PHNED) comprises a heterogeneous group of rare heritable disorders characterized by brittle hair, hypotrichosis, onychodystrophy and micronychia. Autosomal recessive (AR) PHNED has previously been associated with mutations in either KRT85 or HOXC13 on chromosome 12p11.1-q14.3. We investigated a consanguineous Pakistani family with AR PHNED linked to the keratin gene cluster on 12p11.1 but without detectable mutations in KRT85 and HOXC13. Whole exome sequencing of affected individuals revealed homozygosity for a rare c.821T>C variant (p.Phe274Ser) in the KRT74 gene that segregates AR PHNED in the family. The transition alters the highly conserved Phe274 residue in the coil 1B domain required for long-range dimerization of keratins, suggesting that the mutation compromises the stability of intermediate filaments. Immunohistochemical (IHC) analyses confirmed a strong keratin-74 expression in the nail matrix, the nail bed and the hyponychium of mouse distal digits, as well as in normal human hair follicles. Furthermore, hair follicles and epidermis of an affected family member stained negative for Keratin-74 suggesting a loss of function mechanism mediated by the Phe274Ser substitution. Our observations show for the first time that homozygosity for a KRT74 missense variant may be associated with AR PHNED. Heterozygous KRT74 mutations have previously been associated with autosomal dominant woolly hair/hypotrichosis simplex (ADWH). Thus, our findings expand the phenotypic spectrum associated with KRT74 mutations and imply that a subtype of AR PHNED is allelic with ADWH.
Project description:Grainyhead-like 2, encoded by GRHL2, is a member of a highly conserved family of transcription factors that play essential roles during epithelial development. Haploinsufficiency for GRHL2 has been implicated in autosomal-dominant deafness, but mutations have not yet been associated with any skin pathology. We investigated two unrelated Kuwaiti families in which a total of six individuals have had lifelong ectodermal defects. The clinical features comprised nail dystrophy or nail loss, marginal palmoplantar keratoderma, hypodontia, enamel hypoplasia, oral hyperpigmentation, and dysphagia. In addition, three individuals had sensorineural deafness, and three had bronchial asthma. Taken together, the features were consistent with an unusual autosomal-recessive ectodermal dysplasia syndrome. Because of consanguinity in both families, we used whole-exome sequencing to search for novel homozygous DNA variants and found GRHL2 mutations common to both families: affected subjects in one family were homozygous for c.1192T>C (p.Tyr398His) in exon 9, and subjects in the other family were homozygous for c.1445T>A (p.Ile482Lys) in exon 11. Immortalized keratinocytes (p.Ile482Lys) showed altered cell morphology, impaired tight junctions, adhesion defects, and cytoplasmic translocation of GRHL2. Whole-skin transcriptomic analysis (p.Ile482Lys) disclosed changes in genes implicated in networks of cell-cell and cell-matrix adhesion. Our clinical findings of an autosomal-recessive ectodermal dysplasia syndrome provide insight into the role of GRHL2 in skin development, homeostasis, and human disease.
Project description:BackgroundAutosomal dominant anhidrotic ectodermal dysplasia with immune deficiency (AD EDA-ID) is caused by heterozygous point mutations at or close to serine 32 and serine 36 or N-terminal truncations in IκBα that impair its phosphorylation and degradation and thus activation of the canonical nuclear factor κ light chain enhancer of activated B cells (NF-κB) pathway. The outcome of hematopoietic stem cell transplantation is poor in patients with AD EDA-ID despite achievement of chimerism. Mice heterozygous for the serine 32I mutation in IκBα have impaired noncanonical NF-κB activity and defective lymphorganogenesis.ObjectiveWe sought to establish genotype-phenotype correlation in patients with AD EDA-ID.MethodsA disease severity scoring system was devised. Stability of IκBα mutants was examined in transfected cells. Immunologic, biochemical, and gene expression analyses were performed to evaluate canonical and noncanonical NF-κB signaling in skin-derived fibroblasts.ResultsDisease severity was greater in patients with IκBα point mutations than in those with truncation mutations. IκBα point mutants were expressed at significantly higher levels in transfectants compared with truncation mutants. Canonical NF-κB-dependent IL-6 secretion and upregulation of the NF-κB subunit 2/p100 and RELB proto-oncogene, NF-κB subunit (RelB) components of the noncanonical NF-κB pathway were diminished significantly more in patients with point mutations compared with those with truncations. Noncanonical NF-κB-driven generation of the transcriptionally active p100 cleavage product p52 and upregulation of CCL20, intercellular adhesion molecule 1 (ICAM1), and vascular cell adhesion molecule 1 (VCAM1), which are important for lymphorganogenesis, were diminished significantly more in LPS plus α-lymphotoxin β receptor-stimulated fibroblasts from patients with point mutations compared with those with truncations.ConclusionsIκBα point mutants accumulate at higher levels compared with truncation mutants and are associated with more severe disease and greater impairment of canonical and noncanonical NF-κB activity in patients with AD EDA-ID.
Project description:Autosomal dominant hypohidrotic ectodermal dysplasia (ADHED) is a disorder characterized by fine, slow-growing scalp and body hair, sparse eyebrows and eyelashes, decreased sweating, hypodontia, and nail anomalies. By genetic linkage analysis of a large ADHED kindred, we have mapped a gene for ADHED (EDA3) to the proximal long arm of chromosome 2 (q11-q13). Obligate recombinations localize EDA3 to an approximately 9-cM interval between D2S1321 and D2S308, with no apparent recombinations with markers D2S1343, D2S436, D2S293, D2S1894, D2S1784, D2S1890, D2S274, and CHLC.GAAT11C03.
Project description:X-linked anhidrotic ectodermal dysplasia with immunodeficiency (XL-EDA-ID) is caused by hypomorphic mutations in the gene encoding NEMO/IKKgamma, the regulatory subunit of the IkappaB kinase (IKK) complex. IKK normally phosphorylates the IkappaB-inhibitors of NF-kappaB at specific serine residues, thereby promoting their ubiquitination and degradation by the proteasome. This allows NF-kappaB complexes to translocate into the nucleus where they activate their target genes. Here, we describe an autosomal-dominant (AD) form of EDA-ID associated with a heterozygous missense mutation at serine 32 of IkappaBalpha. This mutation is gain-of-function, as it enhances the inhibitory capacity of IkappaBalpha by preventing its phosphorylation and degradation, and results in impaired NF-kappaB activation. The developmental, immunologic, and infectious phenotypes associated with hypomorphic NEMO and hypermorphic IKBA mutations largely overlap and include EDA, impaired cellular responses to ligands of TIR (TLR-ligands, IL-1beta, and IL-18), and TNFR (TNF-alpha, LTalpha1/beta2, and CD154) superfamily members and severe bacterial diseases. However, AD-EDA-ID but not XL-EDA-ID is associated with a severe and unique T cell immunodeficiency. Despite a marked blood lymphocytosis, there are no detectable memory T cells in vivo, and naive T cells do not respond to CD3-TCR activation in vitro. Our report highlights both the diversity of genotypes associated with EDA-ID and the diversity of immunologic phenotypes associated with mutations in different components of the NF-kappaB signaling pathway.
Project description:ObjectiveTo investigate the molecular basis of muscle disease and gnathodiaphyseal dysplasia (GDD) in a large kindred with 11 (6 women and 5 men) affected family members.MethodsWe performed clinical assessment of 3 patients and collected detailed clinical and family history data on 8 additional patients. We conducted molecular genetic analyses on 5 patients using comprehensive neuromuscular disorder panels, exome sequencing (ES), and targeted testing for specific genetic variants. We analyzed the segregation of the muscle and bone phenotypes with the underlying molecular cause.ResultsThe unique clinical presentation of recurrent episodes of rhabdomyolysis associated with muscle cramps, hyperCKemia, muscle hypertrophy, with absent or mild muscle weakness, as well as cemento-osseous lesions of the mandible, with or without bone fractures and other skeletal abnormalities, prompted us to look for the underlying molecular cause of the disorder in this kindred. Molecular testing revealed a missense variant in anoctamin 5 (ANO5) designated as c.1538C>T; p.Thr513Ile, which was previously described in a large kindred with GDD. In silico analysis, searching publicly available databases, segregation analysis, as well as functional studies performed by another group provide strong evidence for pathogenicity of the variant. ES data in the proband excluded the contribution of additional genetic factors.ConclusionsThis report described the coexistence of muscle and bone phenotypes in the same patients with ANO5-related disorder. Our data challenge recent results that suggested complete dichotomy of these phenotypes and the proposed loss-of-function and gain-of-function mechanisms for the skeletal and muscle phenotypes, respectively.
Project description:IntroductionAn analysis was made of three different syndromes associated with p63 gene mutations, known as ectrodactyly-ectodermal dysplasia-clefting syndrome (EEC), ankyloblepharon-ectodermal dysplasia clefting syndrome (AEC or Hay-Wells) and Rapp-Hodgkin syndrome (RHS). The postoperative complications associated with their cleft reconstructions were also evaluated.Materials and methodsExtensive demographic information, in particular of the clinical appearances, associated malformations, and the types and complications of the reconstructive surgical procedures, were recorded of these syndromic cases occurring in a database of 3621 facial cleft deformity patients. The data was analyzed using the Microsoft Excel program.ResultsA total of 10 (0.28%) cases of p63 associated syndromes were recorded: EEC (6), RHS (3), and AEC (1). The following clinical cleft appearances were noted - EEC = 6: CLA 1 -right side unilateral (female); CLAP 4 - right side (1) + left side (1) unilateral (male + female); bilateral (2) (males); hPsP 1 (female) (divided in 3 Black, 2 White, 1 Indian); RHS = 3: CLAP 2 (White males); hPsP 1 (White female); AEC = 1: CLAP bilateral (White male). Other features of the syndromes were: skin, hand, foot, tooth, hair and nail involvement, and light sensitivity. Postoperative complications included: (i) stenosis of nasal opening, especially after reconstruction of the bilateral cleft lip and the columella lengthening (2 cases), (ii) premaxilla-prolabium fusion (2 cases), (iii) repeated occurrence of oro-nasal fistula in the hard palate (4 cases), and (iv) dysgnathial development of midfacial structures (3 cases).DiscussionThree different p63 associated syndromes (EEC, AEC, and RHS) were diagnosed (0.27% of the total facial cleft deformities database). The majority of the cases presented with a bilateral CLAP in males only. A number of females and males had unilateral CLA. The hPsP-cleft was recorded in females only. The associated ectodermal component most probably had a profoundly negative influence on postoperatively wound healing, which was observed in particular at the nasal openings, the premaxilla sulcus and in the hard palate mucosa. The reconstruction of p63 associated syndromes is a greater challenge than the usual cleft reconstruction to the surgeon.
Project description:We studied a large Moroccan family in which anhidrotic ectodermal dysplasia is transmitted as an autosomal recessive trait. Fourteen family members, both males and females, were affected and they all had a common ancestor. Linkage analysis by homozygosity mapping in this family will permit the gene localisation of this rare form of anhidrotic ectodermal dysplasia.