Project description:Infection of poultry with highly pathogenic avian influenza virus (AIV) can be devastating in terms of flock morbidity and mortality, economic loss, and social disruption. The causative agent is confined to certain isolates of influenza A virus subtypes H5 and H7. Due to the potential of direct transfer of avian influenza to humans, continued research into rapid diagnostic tests for influenza is therefore necessary. A nucleic acid sequence-based amplification (NASBA) method was developed to detect a portion of the haemagglutinin gene of avian influenza A virus subtypes H5 and H7 irrespective of lineage. A further NASBA assay, based on the matrix gene, was able to detect examples of all known subtypes (H1-H15) of avian influenza virus. The entire nucleic acid isolation, amplification, and detection procedure was completed within 6h. The dynamic range of the three AIV assays was five to seven orders of magnitude. The assays were sensitive and highly specific, with no cross-reactivity to phylogenetically or clinically relevant viruses. The results of the three AIV NASBA assays correlated with those obtained by viral culture in embryonated fowl's eggs.
Project description:Infectious diseases are a serious global problem, which not only take an enormous human toll but also incur tremendous economic losses. In combating infectious diseases, rapid and accurate diagnostic tests are required for pathogen identification at the point of care (POC). In this review, investigations of diagnostic strategies for infectious diseases that are based on aptamers, especially nucleic acid aptamers, oligonucleotides that have high affinities and specificities toward their targets, are described. Owing to their unique features including low cost of production, easy chemical modification, high chemical stability, reproducibility, and low levels of immunogenicity and toxicity, aptamers have been widely utilized as bio-recognition elements (bio-receptors) for the development of infection diagnostic systems. We discuss nucleic acid aptamer-based methods that have been developed for diagnosis of infections using a format that organizes discussion according to the target pathogenic analytes including toxins or proteins, whole cells and nucleic acids. Also included is, a summary of recent advances made in the sensitive detection of pathogenic bacteria utilizing the isothermal nucleic acid amplification method. Lastly, a nucleic acid aptamer-based POC system is described and future directions of studies in this area are discussed.
Project description:Nucleic acids are chemically modified to fine-tune their properties for biological function. Chemical tools for selective tagging of base modifications enables new approaches; the photosensitizers riboflavin and anthraquinone were previously proposed to oxidize N6 -methyladenine (m6 A) or 5-methylcytosine (5mdC) selectively. Herein, riboflavin, anthraquinone, or Rose Bengal were allowed to react with the canonical nucleosides dA, dC, dG, and dT, and the modified bases 5mdC, m6 A, 8-oxoguanine (dOG), and 8-oxoadenine (dOA) to rank their reactivities. The nucleoside studies reveal that dOG is the most reactive and that the native nucleoside dG is higher or similar in reactivity to 5mdC or m6 A; competition in both single- and double-stranded DNA of dG vs. 5mdC or 6mdA for oxidant confirmed that dG is favorably oxidized. Thus, photosensitizers are promiscuous nucleic acid oxidants with poor chemoselectivity that will negatively impact attempts at targeted oxidation of modified nucleotides in cells.
Project description:The modulation of nucleic acids by small molecules is an essential process across the kingdoms of life. Targeting nucleic acids with small molecules represents a significant challenge at the forefront of chemical biology. Nucleic acid junctions are ubiquitous structural motifs in nature and in designed materials. Herein, we describe a new class of structure-specific nucleic acid junction stabilizers based on a triptycene scaffold. Triptycenes provide significant stabilization of DNA and RNA three-way junctions, providing a new scaffold for the development of nucleic acid junction binders with enhanced recognition properties. Additionally, we report cytotoxicity and cell uptake data in two human ovarian carcinoma cell lines.
Project description:The use of lateral flow assays to detect nucleic acid targets has many applications including point-of-care diagnostics, environmental monitoring, and food safety. A sandwich format, similar to that in protein immunoassays, is often used to capture the target nucleic acid sequence with an immobilized complementary strand anchored to a substrate, and then to visualize this event using a complementary label nucleic acid bound to a nanoparticle label. A critical component of high-sensitivity nucleic acid detection is to utilize high-density capture surfaces for the effective capture of target nucleic acid. Multiple methods have been reported, including the use of streptavidin-based protein anchors that can be adsorbed to the lateral flow substrate and that can utilize the high-affinity streptavidin-biotin linkage to bind biotinylated nucleic acid capture sequences for subsequent target nucleic acid binding. However, these protein anchors have not been systematically characterized for use in the context of nucleic acid detection. In this work, we characterize several protein-based anchors on nitrocellulose for (i) capturing the robustness of the attachment of the protein anchor, (ii) capturing nucleic acid density, and (iii) targeting nucleic acid capture. Further, we demonstrate the signal gains in target nucleic acid hybridization made by increasing the density of capture nucleic acid on a nitrocellulose substrate using multiple applications of protein loading onto nitrocellulose. Finally, we use our high-density capture surfaces to demonstrate high-sensitivity nucleic acid detection in a lateral flow assay (in the context of a SARS-CoV-2 sequence), achieving a LOD of approximately 0.2 nM.
Project description:BACKGROUND:Similar to other resource-limited settings, cost restricts availability of viral load monitoring for most patients receiving antiretroviral therapy in Tijuana, Mexico. We evaluated if a pooling method could improve efficiency and reduce costs while maintaining accuracy. METHODS:We evaluated 700 patient blood plasma specimens at a reference laboratory in Tijuana for detectable viremia, individually and in 10 × 10 matrix pools. Thresholds for virologic failure were set at ?500, ?1000 and ?1500 HIV RNA copies per milliliter. Detectable pools were deconvoluted using pre-set algorithms. Accuracy and efficiency of the pooling method were compared with individual testing. Quality assurance (QA) measures were evaluated after 1 matrix demonstrated low efficiency relative to individual testing. RESULTS:Twenty-two percent of the cohort had detectable HIV RNA (?50 copies/mL). Pooling methods saved approximately one third of viral load assays over individual testing, while maintaining negative predictive values of >90% to detect samples with virologic failure (?50 copies/mL). One matrix with low relative efficiency would have been detected earlier using the developed QA measures, but its exclusion would have only increased relative efficiency from 39% to 42%. These methods would have saved between $13,223 and $14,308 for monitoring this cohort. CONCLUSIONS:Despite limited clinical data, high prevalence of detectable viral loads and a contaminated matrix, pooling greatly improved efficiency of virologic monitoring while maintaining accuracy. By improving cost-effectiveness, these methods could provide sustainability of virologic monitoring in resource-limited settings, and incorporation of developed QA measures will most likely maximize pooling efficiency in future uses.
Project description:Enteroviruses are ubiquitous mammalian pathogens that can produce mild to life-threatening disease. We developed a multimodal, rapid, accurate and economical point-of-care biosensor that can detect nucleic acid sequences conserved amongst 96% of all known enteroviruses. The biosensor harnesses the physicochemical properties of gold nanoparticles and oligonucleotides to provide colourimetric, spectroscopic and lateral flow-based identification of an exclusive enteroviral nucleic acid sequence (23 bases), which was identified through in silico screening. Oligonucleotides were designed to demonstrate specific complementarity towards the target enteroviral nucleic acid to produce aggregated gold-oligonucleotide nanoconstructs. The conserved target enteroviral nucleic acid sequence (≥1 × 10-7 M, ≥1.4 × 10-14 g/mL) initiates gold-oligonucleotide nanoconstruct disaggregation and a signal transduction mechanism, producing a colourimetric and spectroscopic blueshift (544 nm (purple) > 524 nm (red)). Furthermore, lateral-flow assays that utilise gold-oligonucleotide nanoconstructs were unaffected by contaminating human genomic DNA, demonstrated rapid detection of conserved target enteroviral nucleic acid sequence (<60 s), and could be interpreted with a bespoke software and hardware electronic interface. We anticipate that our methodology will translate in silico screening of nucleic acid databases to a tangible enteroviral desktop detector, which could be readily translated to related organisms. This will pave the way forward in the clinical evaluation of disease and complement existing strategies to overcome antimicrobial resistance.
Project description:A wide range of molecular devices with nanoscale dimensions have been recently designed to perform a variety of functions in response to specific molecular inputs. Only limited examples, however, utilize antibodies as regulatory inputs. In response to this, here we report the rational design of a modular DNA-based nanomachine that can reversibly load and release a molecular cargo on binding to a specific antibody. We show here that, by using three different antigens (including one relevant to HIV), it is possible to design different DNA nanomachines regulated by their targeting antibody in a rapid, versatile and highly specific manner. The antibody-powered DNA nanomachines we have developed here may thus be useful in applications like controlled drug-release, point-of-care diagnostics and in vivo imaging.
Project description:Hybrid tandem mass spectrometry (MS/MS) techniques combining electron transfer (ET) and collision activated dissociation (CAD), infrared multiphoton dissociation (IRMPD), or ultraviolet photodissociation (UVPD) were implemented and evaluated for the characterization of a series of oligonucleotides and oligoribonucleotides, including both native single strands and single strands containing platinated, phosphorothioated, and 2'-O-methylated modification sites. ET-IRMPD and ET-UVPD of oligodeoxynucleotides and oligoribonucleotides resulted in rich fragmentation with respect to production of w, a, z, and d ions for DNA, and c, y, w, a-B, d, and z ions for RNA, with many product ions retaining the modification and thus allowing site specific identification. ET-IRMPD caused more extensive secondary dissociation of the ions, in addition to a broader distribution of detectable sequence ions attributed to using a lower mass cutoff. ET-UVPD promoted higher energy fragmentation pathways and created the most diverse MS/MS spectra. The numerous products generated by the hybrid MS/MS techniques resulted in specific and extensive backbone cleavages which allowed the modification sites of multiply modified oligonucleotides to be elucidated.
Project description:Gene delivery biomaterials need to be designed to efficiently achieve nuclear delivery of plasmid DNA. Polycations have been used to package DNA and other nucleic acids within submicrometer-sized particles, offering protection from shear-induced or enzymatic degradation. However, cytotoxicity issues coupled with limited in vivo transfection efficiencies minimize the effectiveness of this approach. In an effort to improve upon existing technologies aimed at delivering nucleic acids, an alternative approach to DNA packaging was explored. Peptide nucleic acids (PNAs) were used to directly functionalize DNA with poly(ethylene glycol) (PEG) chains that provide a steric layer and inhibit multimolecular aggregation during complexation. DNA prePEGylation by this strategy was predicted to enable the formation of more homogeneous and efficiently packaged polyplexes. In this work, DNA-PNA-peptide-PEG (DP3) conjugates were synthesized and self-assembled with 25 kDa poly(ethylenimine) (PEI). Complexes with small standard deviations and average diameters ranging 30-50 nm were created, with minimal dependence of complex size on N/P ratio (PEI amines to DNA phosphates). Furthermore, PEI-DNA interactions were altered by the derivatization strategy, resulting in tighter compaction of the PEI-DP3 complexes in comparison to PEI-DNA complexes. Transfection experiments in Chinese hamster ovary (CHO) cells revealed comparable transfection efficiencies but reduced cytotoxicities of the PEI-DP3 complexes relative to PEI-DNA complexes. The enhanced cellular activities of the PEI-DP3 complexes were maintained following the removal of free PEI from the PEI-DP3 formulations, whereas the cellular activity of the conventional PEI-DNA formulations was reduced by free PEI removal. These findings suggest that DNA prePEGylation by the PNA-based strategy might provide a way to circumvent cytotoxicity and formulation issues related to the use of PEI for in vivo gene delivery.