Project description:The photoreceptor cell-specific ATP-binding cassette transporter gene (ABCA4; previously denoted "ABCR") is mutated, in most patients, with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients from Germany and The Netherlands with isolated CRD. Single-strand conformation-polymorphism analysis and sequencing revealed 19 ABCA4 mutations in 13 (65%) of 20 patients. In six patients, mutations were identified in both ABCA4 alleles; in seven patients, mutations were detected in one allele. One complex ABCA4 allele (L541P;A1038V) was found exclusively in German patients with CRD; one patient carried this complex allele homozygously, and five others were compound heterozygous. These findings suggest that mutations in the ABCA4 gene are the major cause of AR CRD. A primary role of the ABCA4 gene in STGD1/FFM and AR CRD, together with the gene's involvement in an as-yet-unknown proportion of cases with AR RP, strengthens the idea that mutations in the ABCA4 gene could be the most frequent cause of inherited retinal dystrophy in humans.
Project description:ABCA4 is a photoreceptor-specific ATP-binding cassette transporter implicated in the clearance of all-trans-retinal produced in the retina during light perception. Multiple mutations in this protein have been linked to Stargardt disease and other visual disorders. Here we report the first systematic study of posttranslational modifications in native ABCA4 purified from bovine rod outer segments. Seven N-glycosylation sites were detected in exocytoplasmic domains 1 and 2 by mass spectrometry, confirming the topological model of ABCA4 proposed previously. The modifying oligosaccharides were relatively short and homogeneous, predominantly representing a high-mannose type of N-glycosylation. Five phosphorylation sites were detected in cytoplasmic domain 1, with four of them located in the linker "regulatory-like" region conserved among ABCA subfamily members. Contrary to published results, phosphorylation of ABCA4 was found to be independent of light. Using human ABCA4 mutants heterologously expressed in mammalian cells, we showed that the Stargardt disease-associated alanine mutation in the phosphorylation site at position 901 led to protein misfolding and degradation. Furthermore, replacing the S1317 phosphorylation site reduced the basal ATPase activity of ABCA4, whereas an alanine mutation in either the S1185 or T1313 phosphorylation site resulted in a significant decrease in the all-trans-retinal-stimulated ATPase activity without affecting the basal activity, protein expression, or localization. In agreement with this observation, partial dephosphorylation of native bovine ABCA4 led to reduction of both basal and stimulated ATPase activity. Thus, we present the first evidence that phosphorylation of ABCA4 can regulate its function.
Project description:Stargardt disease (STGD) is a common autosomal recessive maculopathy of early and young-adult onset and is caused by alterations in the gene encoding the photoreceptor-specific ATP-binding cassette (ABC) transporter (ABCA4). We have studied 144 patients with STGD and 220 unaffected individuals ascertained from the German population, to complete a comprehensive, population-specific survey of the sequence variation in the ABCA4 gene. In addition, we have assessed the proposed role for ABCA4 in age-related macular degeneration (AMD), a common cause of late-onset blindness, by studying 200 affected individuals with late-stage disease. Using a screening strategy based primarily on denaturing gradient gel electrophoresis, we have identified in the three study groups a total of 127 unique alterations, of which 90 have not been previously reported, and have classified 72 as probable pathogenic mutations. Of the 288 STGD chromosomes studied, mutations were identified in 166, resulting in a detection rate of approximately 58%. Eight different alleles account for 61% of the identified disease alleles, and at least one of these, the L541P-A1038V complex allele, appears to be a founder mutation in the German population. When the group with AMD and the control group were analyzed with the same methodology, 18 patients with AMD and 12 controls were found to harbor possible disease-associated alterations. This represents no significant difference between the two groups; however, for detection of modest effects of rare alleles in complex diseases, the analysis of larger cohorts of patients may be required.
Project description:BACKGROUNDOutcome measures sensitive to disease progression are needed for ATP-binding cassette, sub-family A, member 4-associated (ABCA4-associated) retinopathy. We aimed to quantify ellipsoid zone (EZ) loss and photoreceptor degeneration beyond EZ-loss in ABCA4-associated retinopathy and investigate associations between photoreceptor degeneration, genotype, and age.METHODSWe analyzed 132 eyes from 66 patients (of 67 enrolled) with molecularly confirmed ABCA4-associated retinopathy from a prospective natural history study with a median [IQR] follow-up of 4.2 years [3.1, 5.1]. Longitudinal spectral-domain optical coherence tomography volume scans (37 B-scans, 30° × 15°) were segmented using a deep learning (DL) approach. For genotype-phenotype analysis, a model of ABCA4 variants was applied with the age of criterion EZ-loss (6.25 mm2) as the dependent variable.RESULTSPatients exhibited an average (square-root-transformed) EZ-loss progression rate of [95% CI] 0.09 mm/y [0.06, 0.11]. Outer nuclear layer (ONL) thinning extended beyond the area of EZ-loss. The average distance from the EZ-loss boundary to normalization of ONL thickness (to ±2 z score units) was 3.20° [2.53, 3.87]. Inner segment (IS) and outer segment (OS) thinning was less pronounced, with an average distance from the EZ-loss boundary to layer thickness normalization of 1.20° [0.91, 1.48] for the IS and 0.60° [0.49, 0.72] for the OS. An additive model of allele severity explained 52.7% of variability in the age of criterion EZ-loss.CONCLUSIONPatients with ABCA4-associated retinopathy exhibited significant alterations of photoreceptors outside of EZ-loss. DL-based analysis of photoreceptor laminae may help monitor disease progression and estimate the severity of ABCA4 variants.TRIAL REGISTRATIONClinicalTrials.gov identifier: NCT01736293.FUNDINGNational Eye Institute Intramural Research Program and German Research Foundation grant PF950/1-1.
Project description:The adamantly-substituted retinoid related (ARR) molecules have been found to induce apoptosis in a variety of malignant cells both in vitro and in vivo. A number of mechanisms have been proposed by which apoptosis is achieved by this class of molecules. We have previously demonstrated that ARRs are potent inducers of apoptosis in leukemia and pancreatic cancer cells. We designed experiments that the exposure of leukemia and pancreatic cancer cell lines to the 3-Cl-AHPC ((E)-4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid )may result in the modulation of microRNA expression or repression and that this differential microRNA expression may contribute to ARR-mediated inhibition of cellular proliferation and cell death induction.
Project description:Visual function in vertebrates critically depends on the continuous regeneration of visual pigments in rod and cone photoreceptors. RPE65 is a well-established retinoid isomerase in the pigment epithelium that regenerates rhodopsin during the rod visual cycle; however, its contribution to the regeneration of cone pigments remains obscure. In this study, we use potent and selective RPE65 inhibitors in rod- and cone-dominant animal models to discern the role of this enzyme in cone-mediated vision. We confirm that retinylamine and emixustat-family compounds selectively inhibit RPE65 over DES1, the putative retinoid isomerase of the intraretinal visual cycle. In vivo and ex vivo electroretinography experiments in Gnat1-/- mice demonstrate that acute administration of RPE65 inhibitors after a bleach suppresses the late, slow phase of cone dark adaptation without affecting the initial rapid portion, which reflects intraretinal visual cycle function. Acute administration of these compounds does not affect the light sensitivity of cone photoreceptors in mice during extended exposure to background light, but does slow all phases of subsequent dark recovery. We also show that cone function is only partially suppressed in cone-dominant ground squirrels and wild-type mice by multiday administration of an RPE65 inhibitor despite profound blockade of RPE65 activity. Complementary experiments in these animal models using the DES1 inhibitor fenretinide show more modest effects on cone recovery. Collectively, these studies demonstrate a role for continuous RPE65 activity in mammalian cone pigment regeneration and provide further evidence for RPE65-independent regeneration mechanisms.
Project description:The retinoid cycle is a recycling system that replenishes the 11-cis-retinal chromophore of rhodopsin and cone pigments. Photoreceptor-specific retinol dehydrogenase (prRDH) catalyzes reduction of all-trans-retinal to all-trans-retinol and is thought to be a key enzyme in the retinoid cycle. We disrupted mouse prRDH (human gene symbol RDH8) gene expression by targeted recombination and generated a homozygous prRDH knock-out (prRDH-/-) mouse. Histological analysis and electron microscopy of retinas from 6- to 8-week-old prRDH-/- mice revealed no structural differences of the photoreceptors or inner retina. For brief light exposure, absence of prRDH did not affect the rate of 11-cis-retinal regeneration or the decay of Meta II, the activated form of rhodopsin. Absence of prRDH, however, caused significant accumulation of all-trans-retinal following exposure to bright lights and delayed recovery of rod function as measured by electroretinograms and single cell recordings. Retention of all-trans-retinal resulted in slight overproduction of A2E, a condensation product of all-trans-retinal and phosphatidylethanolamine. We conclude that prRDH is an enzyme that catalyzes reduction of all-trans-retinal in the rod outer segment, most noticeably at higher light intensities and prolonged illumination, but is not an essential enzyme of the retinoid cycle.