Project description:This is a miRNA expression analysis by microarray. Comparison was made beween Ulcerative Colitis (UC) vs control, Active UC vs Remission, Ascending Colon vs Rectosigmoid area of Colon. The samples were labeled using the miRCURY LNA™ microRNA Hi-Power Labeling Kit, Hy3™/Hy5™ and hybridized on the miRCURY LNA™ microRNA Array (7th gen) following the scheme you outlined in the sample submission form. The technical data quality assessment showed that the labeling was successful as all capture probes for the control spike-in oligo nucleotides produced signals in the expected range. Following normalization of the quantified signals (background corrected) using the global Lowess regression algorithm, we have performed an unsupervised as well as supervised data analysis.
Project description:Expression profiling of human colon mucosa samples aquired from inflammatory bowel disease patients and healthy controls. Expression profiling was done using Illumina Human HT-12 arrays, and data analysis was performed using tools from the Bioconductor package
Project description:Samples for microarray analysis were derived from terminal ileum and colonic tissues from probands with Crohn´s disease and Ulcerative Colitis and control patients, respectively. IBD tissue biopsies from non-inflamed regions 10 cm distant from pathological areas were selected. To minimize inter-individual differences in gene expression and to enrich for IBD-specific transcriptional events, 2.5 µg of total RNA from terminal ileum and colon transversum from four individuals of each patient and control group were used for pooling. Keywords = IBD Keywords = Crohn´s disease Keywords = Ulcerative Colitis Keywords: other
Project description:Monoclonal antibody biologic therapies, introduced nearly 20 years ago, revolutionized the treatment of inflammatory bowel disease (IBD) and are now well established as the most effective agents available. As the first of these biologic agents starts to come off patent, biosimilar agents have emerged as alternatives to originator drugs. The unique drug development and manufacturing processes involved in the creation of biologic agents pose distinct regulatory challenges compared to generic formulations of conventional medications. Reductions in medication costs have been proposed to be a major benefit of biosimilar therapies; however, there are concerns regarding the adequacy of the existing regulatory process and data requirements for biosimilar therapy approval, as well as the true bioequivalence of these agents. Infliximab biosimilars for the treatment of IBD have been available in Europe and Asia for a few years and are expected to become available in the United States within the next 1 to 2 years. This article reviews biosimilar therapies and the current data with respect to IBD.
Project description:Rat sarcoma virus homolog (Rho) guanosine triphosphatases (GTPases) function as "molecular switch" in cellular signaling regulation processes and are associated with the pathogenesis of inflammatory bowel disease (IBD). This chronic intestinal tract inflammation primarily encompasses two diseases: Crohn's disease and ulcerative colitis. The pathogenesis of IBD is complex and considered to include four main factors and their interactions: genetics, intestinal microbiota, immune system, and environment. Recently, several novel pathogenic components have been identified. In addition, potential therapies for IBD targeting Rho GTPases have emerged and proven to be clinically effective. This review mainly focuses on Rho GTPases and their possible mechanisms in IBD pathogenesis. The therapeutic possibility of Rho GTPases is also discussed.
Project description:Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory disease, including ulcerative colitis (UC) and Crohn's disease (CD). The abnormality of inflammatory and immune responses in the intestine contributes to the pathogenesis and progression of IBD. Autophagy is a vital catabolic process in cells. Recent studies report that autophagy is highly involved in various kinds of diseases, especially inflammation-related diseases, such as IBD. In this review, the biological characteristics of autophagy and its role in IBD will be described and discussed based on recent literature. In addition, several therapies for IBD through modulating the inflammasome and intestinal microbiota taking advantage of autophagy regulation will be introduced. We aim to bring new insight in the exploration of mechanisms for IBD and development of novel therapeutic strategies against IBD.
Project description:Recently the role of Parkinson's disease 7 (PARK7) was studied in gastrointestinal diseases, however, the complex role of PARK7 in the intestinal inflammation is still not completely clear. Expression and localization of PARK7 were determined in the colon biopsies of children with inflammatory bowel disease (IBD), in the colon of dextran sodium sulphate (DSS) treated mice and in HT-29 colonic epithelial cells treated with interleukin (IL)-17, hydrogen peroxide (H2O2), tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β or lipopolysaccharide (LPS). Effect of PARK7 on the synthesis of IBD related cytokines was determined using PARK7 gene silenced HT-29 cells and 3,4,5-trimethoxy-N-(4-(8-methylimidazo(1,2-a)pyridine-2-yl)phenyl)benzamide (Comp23)-compound increasing PARK7 activity-treated mice with DSS-colitis. PARK7 expression was higher in the mucosa of children with Crohn's disease compared to that of controls. While H2O2 and IL-17 treatment increased, LPS, TNF-α or TGF-β treatment decreased the PARK7 synthesis of HT-29 cells. PARK7 gene silencing influenced the synthesis of IL1B, IL6, TNFA and TGFB1 in vitro. Comp23 treatment attenuated the ex vivo permeability of colonic sacs, the clinical symptoms, and mucosal expression of Tgfb1, Il1b, Il6 and Il10 of DSS-treated mice. Our study revealed the role of PARK7 in the regulation of IBD-related inflammation in vitro and in vivo, suggesting its importance as a future therapeutic target.
Project description:Dysregulation of long noncoding RNA (lncRNA) expression is linked to the development of various diseases. Recently, an emerging body of evidence has indicated that lncRNAs play important roles in the pathogenesis of inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative Colitis (UC). In IBD, lncRNAs have been shown to be involved in diverse processes, including the regulation of intestinal epithelial cell apoptosis, association with lipid metabolism, and cell-cell interactions, thereby enhancing inflammation and the functional regulation of regulatory T cells. In this review, we aim to summarize the current knowledge regarding the role of lncRNAs in IBD and highlight potential avenues for future investigation. We also collate potentially immune-relevant, IBD-associated lncRNAs identified through a built-by association analysis with respect to their neighboring protein-coding genes within IBD-susceptible loci. We further underscore their importance by highlighting their enrichment for various aspects of immune system regulation, including antigen processing/presentation, immune cell proliferation and differentiation, and chronic inflammatory responses. Finally, we summarize the potential of lncRNAs as diagnostic biomarkers in IBD.