Project description:A high propensity to aggregate into intractable deposits is a common problem limiting the production and use of many peptides and proteins in a wide range of biotechnological and pharmaceutical applications. Many therapeutic polypeptides are frequently abandoned at an early stage in their development because of problems with stability and aggregation. It has been shown recently that parameters describing the physicochemical properties of polypeptides can be used as predictors of protein aggregation. Here we demonstrate that these and similar tools can be applied to the rational redesign of bioactive molecules with a significantly reduced aggregation propensity without loss of physiological activity. This strategy has been exemplified by designing variants of the hormone calcitonin that show a significantly reduced aggregation propensity, yet maintain, or even increase, their potency when compared to the current therapeutic forms. The results suggest that this approach could be used successfully to enhance the solubility and efficacy of a wide range of other peptide and protein therapeutics.
Project description:A strategy for rational enzyme design is reported and illustrated by the engineering of a protein catalyst for thiol-ester hydrolysis. Five mutants of human glutathione (GSH; gamma-Glu-Cys-Gly) transferase A1-1 were designed in the search for a catalyst and to provide a set of proteins from which the reaction mechanism could be elucidated. The single mutant A216H catalyzed the hydrolysis of the S-benzoyl ester of GSH under turnover conditions with a k(cat)/K(M) of 156 M(-1) x min(-1), and a catalytic proficiency of >10(7) M(-1) when compared with the first-order rate constant of the uncatalyzed reaction. The wild-type enzyme did not hydrolyze the substrate, and thus, the introduction of a single histidine residue transformed the wild-type enzyme into a turnover system for thiol-ester hydrolysis. By kinetic analysis of single, double, and triple mutants, as well as from studies of reaction products, it was established that the enzyme A216H catalyzes the hydrolysis of the thiol-ester substrate by a mechanism that includes an acyl intermediate at the side chain of Y9. Kinetic measurements and the crystal structure of the A216H GSH complex provided compelling evidence that H216 acts as a general-base catalyst. The introduction of a single His residue into human GSH transferase A1-1 created an unprecedented enzymatic function, suggesting a strategy that may be of broad applicability in the design of new enzymes. The protein catalyst has the hallmarks of a native enzyme and is expected to catalyze various hydrolytic, as well as transesterification, reactions.
Project description:Glutathione peroxidase 4 (GPX4) reduces lipid hydroperoxides in lipid membranes, effectively inhibiting iron-dependent cell death or ferroptosis. The upregulation of the enzyme by the mutations at residues D21 and D23 has been suggested to be associated with higher protein activity, which confers more protection against neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. Therefore, it has become an attractive target for treating and preventing neurodegenerative diseases. However, identifying means of mimicking the beneficial effects of these mutations distant from the active site constitutes a formidable challenge in moving toward therapeutics. In this study, we explore using molecular dynamics simulations to computationally map the conformational and energetic landscape of the wild-type GPX4 protein and three mutant variants to identify the allosteric networks of the enzyme. We present the conformational dynamic profile providing the desired signature behavior of the enzyme. We also discuss the implications of these findings for drug design efforts.
Project description:Glutathione transferase (formerly GST) catalyzes the inactivation of various electrophile-producing anticancer agents via conjugation to the tripeptide glutathione. Moreover, several data link the overexpression of some GSTs, in particular GSTP1-1, to both natural and acquired resistance to various structurally unrelated anticancer drugs. Tumor overexpression of these proteins has provided a rationale for the search of GST inhibitors and GST activated cytotoxic prodrugs. In the present review we discuss the current structural and pharmacological knowledge of GST-activated cytotoxic compounds.
Project description:To explore the role of the HLH subdomain in bHLHZ proteins, we designed sets of minimalist proteins based on bHLHZ protein Max, bHLH/PAS protein Arnt and bZIP protein C/EBP. In the first, the Max bHLH and C/EBP leucine zipper were fused such that the leucine heptad repeats were not in register; therefore, the protein dimerization interface was disrupted. Max1bHLH-C/EBP showed little ability to activate transcription from the E-box (5'-CACGTG) in the yeast one-hybrid assay, and no E-box binding by quantitative fluorescence anisotropy. Max1bHLH-C/EBP's activity was significantly improved after library selection (three amino acids randomized between HLH and leucine zipper), despite the Max bHLH and C/EBP zipper still being out of register: a representative mutant gave a high nanomolar K(d) value for E-box binding. Thus, selection proved to be a powerful tool for salvaging the flawed Max1bHLH-C/EBP, although the out-of-register mutants still did not achieve the strong DNA-binding affinities displayed by their in-register counterparts. ArntbHLH-C/EBP hybrids further demonstrated the importance of maintaining register, as out-of-register mutants showed no E-box-responsive activity, whereas the in-register hybrid showed moderate activity. In another design, we eliminated the HLH altogether and fused the Max basic region to the C/EBP zipper to generate bZIP-like hybrids. Despite numerous designs and selections, these hybrids possessed no E-box-responsive activity. Finally, we tested the importance of the loop sequence in MaxbHLHZ by fluorescence and circular dichroism. In one mutant, the loop was shortened by two residues; in the other, the Lys57:DNA-backbone interaction was abolished by mutation to Gly57. Both showed markedly decreased E-box-binding relative to MaxbHLHZ. Our results suggest that, in contrast to the more rigid bZIP, the HLH is capable of significant conformational adaptation to enable gene-regulatory function and is required for protein dimerization and positioning the basic region for DNA recognition.
Project description:The design and synthesis of a series of urea-based nonpolycyclic aromatic ligands with alkylaminoanilino side chains as telomeric and genomic G-quadruplex DNA interacting agents are described. Their interactions with quadruplexes have been examined by means of fluorescent resonance energy transfer melting, circular dichroism, and surface plasmon resonance-based assays. These validate the design concept for such urea-based ligands and also show that they have significant selectivity over duplex DNA, as well as for particular G-quadruplexes. The ligand-quadruplex complexes were investigated by computational molecular modeling, providing further information on structure-activity relationships. Preliminary biological studies using short-term cell growth inhibition assays show that some of the ligands have cancer cell selectivity, although they appear to have low potency for intracellular telomeric G-quadruplex structures, suggesting that their cellular targets may be other, possibly oncogene-related quadruplexes.
Project description:Radical-type mechanophores (RMs) are attractive molecules that undergo homolytic scission of their central C-C bond to afford radical species upon exposure to heat or mechanical stimuli. However, the lack of a rational design concept limits the development of RMs with pre-determined properties. Herein, we report a rational design strategy of RMs with high thermal tolerance while maintaining mechanoresponsiveness. A combined experimental and theoretical analysis revealed that the high thermal tolerance of these RMs is related to the radical-stabilization energy (RSE) as well as the Hammett and modified Swain-Lupton constants at the para-position (σp). The trend of the RSE values is in good agreement with the experimentally evaluated thermal tolerance of a series of mechanoresponsive RMs based on the bisarylcyanoacetate motif. Furthermore, the singly occupied molecular orbital (SOMO) levels clearly exhibit a negative correlation with σp within a series of RMs that are based on the same skeleton, paving the way toward the development of RMs that can be handled under ambient conditions without peroxidation.
Project description:Considering the pleiotropic roles of glutathione transferase (GST) omega class members in redox homeostasis, we hypothesized that polymorphisms in GSTO1 and GSTO2 might contribute to prostate cancer (PC) development and progression. Therefore, we performed a comprehensive analysis of GSTO1 and GSTO2 SNPs' role in susceptibility to PC, as well as whether they might serve as prognostic biomarkers independently or in conjunction with other common GST polymorphisms (GSTM1, GSTT1, and GSTP1). Genotyping was performed in 237 PC cases and 236 age-matched controls by multiplex PCR for deletion of GST polymorphisms and quantitative PCR for SNPs. The results of this study, for the first time, demonstrated that homozygous carriers of both GSTO1*A/A and GSTO2*G/G variant genotypes are at increased risk of PC. This was further confirmed by haplotype analysis, which showed that H2 comprising both GSTO1*A and GSTO2*G variant alleles represented a high-risk combination. However, the prognostic relevance of polymorphisms in GST omega genes was not found in our cohort of PC patients. Analysis of the role of other investigated GST polymorphisms (GSTM1, GSTT1, and GSTP1) in terms of PC prognosis has shown shorter survival in carriers of GSTP1*T/T (rs1138272) genotype than in those carrying at least one referent allele. In addition, the presence of GSTP1*T/T genotype independently predicted a four-fold higher risk of overall mortality among PC patients. This study demonstrated a significant prognostic role of GST polymorphism in PC.
Project description:The generation of enzymes to catalyze specific reactions is one of the more challenging problems facing protein engineers. Structural similarities between the enzyme scytalone dehydratase with nuclear transport factor 2 (NTF2) suggested the potential for NTF2 to be re-engineered into a scytalone dehydratase-like enzyme. We introduced four key catalytic residues into NTF2 to create a scytalone dehydratase-like active site. A C-terminal helix found in scytalone dehydratase but absent in NTF2 also was added. Mutant NTF2 proteins were tested for catalytic activity by using a spectroscopic assay. One of the engineered enzymes exhibited catalytic activity with minimal kcat and Km values of 0.125 min-1 and 800 microM, respectively. This level of catalytic activity represents minimally a 150-fold improvement in activity over the background rate for substrate dehydration and a dramatic step forward from the catalytically inert parent NTF2. This work represents one of the few examples of converting a protein scaffold into an enzyme, outside those arising from the induction of catalytic activity into antibodies.