Project description:The objective of this study was to profile circular RNAs (circRNAs) in rat genetic models of cardiovascular and renal disease. Renal profiles were obtained from the Dahl Salt-Sensitive rat (S), the Dahl Salt-Resistant rat (R), the Spontaneously Hypertensive Rat (SHR) and the Wistar Kyoto rat (WKY).
Project description:Transcriptomic analysis of primary CD34+ cells. CD34+ cell were induced in vitro with hypoxia (3 hours), high glucose and high glucose plus hypoxia. Subsequently, the effect of metformin (anti-diabetic drug) on all conditions was studied to take advantage of transcriptomics to prospectively explore the mechanism of this drug to reduce the risk of cardiovascular diseases in type II diabetic patients. Total RNA isolated from 20 samples; 10 different conditions each has 2 repeats; labeled, and hybridized to Affymetrix Human Gene 1.0 ST Array.
Project description:microRNAs (miRNAs) are non-coding RNA molecules that modulate the stability and/or the translational efficiency of specific messenger RNAs. They have been shown to play a regulatory role in most biological processes and their expression is disrupted in many cardiovascular diseases. This review describes studies performed at Policlinico San Donato-IRCCS in cell cultures, animal models, and patients, showing a penetrant role of miRNAs in cell response to hypoxia and in ischaemic cardiovascular diseases. These experiments indicate miRNA as an emerging class of therapeutic targets.
Project description:Unprecedented advances in secondary prevention have greatly improved the prognosis of cardiovascular diseases (CVDs); however, CVDs remain a leading cause of death globally. These findings suggest the need to reconsider cardiovascular risk and optimal medical therapy. Numerous studies have shown that inflammation, pro-thrombotic factors, and gene mutations are focused not only on cardiovascular residual risk but also as the next therapeutic target for CVDs. Furthermore, recent clinical trials, such as the Canakinumab Anti-inflammatory Thrombosis Outcomes Study trial, showed the possibility of anti-inflammatory therapy for patients with CVDs. Osteopontin (OPN) is a matricellular protein that mediates diverse biological functions and is involved in a number of pathological states in CVDs. OPN has a two-faced phenotype that is dependent on the pathological state. Acute increases in OPN have protective roles, including wound healing, neovascularization, and amelioration of vascular calcification. By contrast, chronic increases in OPN predict poor prognosis of a major adverse cardiovascular event independent of conventional cardiovascular risk factors. Thus, OPN can be a therapeutic target for CVDs but is not clinically available. In this review, we discuss the role of OPN in the development of CVDs and its potential as a therapeutic target.
Project description:Cardiovascular diseases are one of the leading causes of death. Increasing evidence has shown that pharmacological or genetic targeting of mitochondria can ameliorate each stage of these pathologies, which are strongly associated with mitochondrial dysfunction. Removal of inefficient and dysfunctional mitochondria through the process of mitophagy has been reported to be essential for meeting the energetic requirements and maintaining the biochemical homeostasis of cells. This process is useful for counteracting the negative phenotypic changes that occur during cardiovascular diseases, and understanding the molecular players involved might be crucial for the development of potential therapies. Here, we summarize the current knowledge on mitophagy (and autophagy) mechanisms in the context of heart disease with an important focus on atherosclerosis, ischemic heart disease, cardiomyopathies, heart failure, hypertension, arrhythmia, congenital heart disease and peripheral vascular disease. We aim to provide a complete background on the mechanisms of action of this mitochondrial quality control process in cardiology and in cardiac surgery by also reviewing studies on the use of known compounds able to modulate mitophagy for cardioprotective purposes.
Project description:Lipids can go through lipid peroxidation, an endogenous chain reaction that consists in the oxidative degradation of lipids leading to the generation of a wide variety of highly reactive carbonyl species (RCS), such as short-chain carbonyl derivatives and oxidized truncated phospholipids. RCS exert a wide range of biological effects due to their ability to interact and covalently bind to nucleophilic groups on other macromolecules, such as nucleic acids, phospholipids, and proteins, forming reversible and/or irreversible modifications and generating the so-called advanced lipoxidation end-products (ALEs). Lipoxidation plays a relevant role in the onset of cardiovascular diseases (CVD), mainly in the atherosclerosis-based diseases in which oxidized lipids and their adducts have been extensively characterized and associated with several processes responsible for the onset and development of atherosclerosis, such as endothelial dysfunction and inflammation. Herein we will review the current knowledge on the sources of lipids that undergo oxidation in the context of cardiovascular diseases, both from the bloodstream and tissues, and the methods for detection, characterization, and quantitation of their oxidative products and protein adducts. Moreover, lipoxidation and ALEs have been associated with many oxidative-based diseases, including CVD, not only as potential biomarkers but also as therapeutic targets. Indeed, several therapeutic strategies, acting at different levels of the ALEs cascade, have been proposed, essentially blocking ALEs formation, but also their catabolism or the resulting biological responses they induce. However, a deeper understanding of the mechanisms of formation and targets of ALEs could expand the available therapeutic strategies.
Project description:Cardiovascular diseases have become the major killers in today's world, among which coronary artery diseases (CADs) make the greatest contributions to morbidity and mortality. Although state-of-the-art technologies have increased our knowledge of the cardiovascular system, the current diagnosis and treatment modalities for CADs still have limitations. As an emerging cross-disciplinary approach, nanotechnology has shown great potential for clinical use. In this review, recent advances in nanotechnology in the diagnosis of CADs will first be elucidated. Both the sensitivity and specificity of biosensors for biomarker detection and molecular imaging strategies, such as magnetic resonance imaging, optical imaging, nuclear scintigraphy, and multimodal imaging strategies, have been greatly increased with the assistance of nanomaterials. Second, various nanomaterials, such as liposomes, polymers (PLGA), inorganic nanoparticles (AuNPs, MnO2, etc.), natural nanoparticles (HDL, HA), and biomimetic nanoparticles (cell-membrane coating) will be discussed as engineered as drug (chemicals, proteins, peptides, and nucleic acids) carriers targeting pathological sites based on their optimal physicochemical properties and surface modification potential. Finally, some of these nanomaterials themselves are regarded as pharmaceuticals for the treatment of atherosclerosis because of their intrinsic antioxidative/anti-inflammatory and photoelectric/photothermal characteristics in a complex plaque microenvironment. In summary, novel nanotechnology-based research in the process of clinical transformation could continue to expand the horizon of nanoscale technologies in the diagnosis and therapy of CADs in the foreseeable future.
Project description:MicroRNAs (miRNAs) are a class of small noncoding RNAs that have gained status as important regulators of gene expression. Recent studies have demonstrated that miRNAs are aberrantly expressed in the cardiovascular system under some pathological conditions. Gain- and loss-of-function studies using in vitro and in vivo models have revealed distinct roles for specific miRNAs in cardiovascular development and physiological function. The implications of miRNAs in cardiovascular disease have recently been recognized, representing the most rapidly evolving research field. In the present minireview, the current relevant findings on the role of miRNAs in cardiac diseases are updated and the target genes of these miRNAs are summarized.
Project description:Several epidemiological studies have clearly shown that low plasma levels of high density lipoprotein cholesterol (HDL-C) represent a cardiovascular disease (CVD) risk factor. However, it is unclear if there is a causal association between HDL-C concentration and CVD. A recent study published in the Lancet, which performed two Mendelian randomization analyses, showed that increased HDL-C levels were not associated with a decreased risk of myocardial infarction. These findings, together with the termination of the niacin-based AIM-HIGH trial and the discontinuation of cholesteryl ester transfer protein inhibitor dalcetrapib, challenge the concept that raising of plasma HDL-C will uniformly translate into reductions in CVD risk. HDL particles exhibit several anti-atherosclerotic properties, such as anti-inflammatory and anti-oxidative activities and cellular cholesterol efflux activity. Furthermore, HDL particles are very heterogeneous in terms of size, structure, composition and metabolism. HDL functionality may be associated more strongly with CVD risk than the traditional HDL-C levels. More research is needed to assess the association of the structure of HDL particle with its functionality and metabolism.