Project description:Motor stereotypies are common, repetitive, rhythmic movements with typical onset in early childhood. While most often described in children with autism spectrum disorder (ASD) and intellectual disability (ID), stereotypies can also present without developmental delay and persist into adulthood. Stereotypies are often disruptive and harmful, both physically and socially, and effective evidence-based treatments are lacking. This can be attributed, in part, to our incomplete knowledge of the underlying biological and environmental risk. Several studies implicate various neurotransmitters, brain circuits, anatomical loci, and pre- and post-natal environmental influences in stereotypy onset and symptom severity. However, there are few points of convergence among a relatively small number of studies, indicating that more research is needed to confirm the underlying bases of risk. Of particular note is the lack of published genetic studies of stereotypies, despite evidence for Mendelian inheritance patterns in some families. Focusing future studies on typically-developing children with primary motor stereotypies may be a useful approach to minimize potential biological, environmental, and genetic heterogeneity that could theoretically hinder consistent findings. Ultimately, a deeper understanding of the underlying biology and risk factors for motor stereotypies will lead us closer to more effective targeted therapies that will alleviate suffering in affected children.
Project description:Tics and Tourette's syndrome are common hyperkinetic movement disorders seen mostly in the pediatric age group. Tics are defined as sudden, rapid, recurrent, nonrhythmic motor movements or vocalization, generally preceded by urge. Tourette's syndrome is defined as the presence of both motor and phonic tics for more than 1 year in patients with onset less than 18 years old. Most of these hyperkinetic movement disorders improve in adulthood. This review emphasizes the clinical pearls in the diagnosis and distinguishing it from other movement disorders. The treatment ranges from behavioral therapies, medical management, and also surgical treatment such as deep brain stimulation that is limited to refractory patients.
Project description:Motor tics are a cardinal feature of Tourette syndrome and are traditionally associated with an excess of striatal dopamine in the basal ganglia. Recent evidence increasingly supports a more articulated view where cerebellum and cortex, working closely in concert with basal ganglia, are also involved in tic production. Building on such evidence, this article proposes a computational model of the basal ganglia-cerebellar-thalamo-cortical system to study how motor tics are generated in Tourette syndrome. In particular, the model: (i) reproduces the main results of recent experiments about the involvement of the basal ganglia-cerebellar-thalamo-cortical system in tic generation; (ii) suggests an explanation of the system-level mechanisms underlying motor tic production: in this respect, the model predicts that the interplay between dopaminergic signal and cortical activity contributes to triggering the tic event and that the recently discovered basal ganglia-cerebellar anatomical pathway may support the involvement of the cerebellum in tic production; (iii) furnishes predictions on the amount of tics generated when striatal dopamine increases and when the cortex is externally stimulated. These predictions could be important in identifying new brain target areas for future therapies. Finally, the model represents the first computational attempt to study the role of the recently discovered basal ganglia-cerebellar anatomical links. Studying this non-cortex-mediated basal ganglia-cerebellar interaction could radically change our perspective about how these areas interact with each other and with the cortex. Overall, the model also shows the utility of casting Tourette syndrome within a system-level perspective rather than viewing it as related to the dysfunction of a single brain area.
Project description:Simple motor tics are sudden, nonrhythmic jerk like movements that are often preceded by premonitory urge and can be voluntarily suppressed. Some clinical characteristic of tics such as variability of movement, distractibility and fluctuating course can mimic functional movement disorders. Here we report a case of motor tics where the physiological approach in addition to careful clinical assessments is helpful to support the diagnosis of tic.
Project description:Tourette syndrome (TS) is a childhood-onset disorder in which tics are often preceded by premonitory sensory urges. More severe urges correlate with worse tics and can render behavioral therapies less effective. The supplementary motor area (SMA) is a prefrontal region believed to influence tic performance. To determine whether cortical physiological properties correlate with urges and tics, we evaluated, in 8-12-year-old right-handed TS children (n = 17), correlations of urge and tic severity scores and compared both to cortical excitability (CE) and short- and long-interval cortical inhibition (SICI and LICI) in both left and right M1. We also modeled these M1 transcranial magnetic stimulation measures with SMA gamma-amino butyric acid (GABA) levels in TS and typically developing control children (n = 16). Urge intensity correlated strongly with tic scores. More severe urges correlated with lower CE and less LICI in both right and left M1. Unexpectedly, in right M1, lower CE and less LICI correlated with less severe tics. We found that SMA GABA modulation of right, but not left, M1 CE and LICI differed in TS. We conclude that in young children with TS, lower right M1 CE and LICI, modulated by SMA GABA, may reflect compensatory mechanisms to diminish tics in response to premonitory urges.
Project description:Motor tics are sudden, brief, repetitive movements that constitute the main symptom of Tourette syndrome (TS). Multiple lines of evidence suggest the involvement of the cortico-basal ganglia system, and in particular the basal ganglia input structure-the striatum in tic formation. The striatum receives somatotopically organized cortical projections and contains an internal GABAergic network of interneurons and projection neurons' collaterals. Disruption of local striatal GABAergic connectivity has been associated with TS and was found to induce abnormal movements in model animals. We have previously described the behavioral and neurophysiological characteristics of motor tics induced in monkeys by local striatal microinjections of the GABAA antagonist bicuculline. In the current study we explored the abnormal movements induced by a similar manipulation in freely moving rats. We targeted microinjections to different parts of the dorsal striatum, and examined the effects of this manipulation on the induced tic properties, such as latency, duration, and somatic localization. Tics induced by striatal disinhibition in monkeys and rats shared multiple properties: tics began within several minutes after microinjection, were expressed solely in the contralateral side, and waxed and waned around a mean inter-tic interval of 1-4 s. A clear somatotopic organization was observed only in rats, where injections to the anterior or posterior striatum led to tics in the forelimb or hindlimb areas, respectively. These results suggest that striatal disinhibition in the rat may be used to model motor tics such as observed in TS. Establishing this reliable and accessible animal model could facilitate the study of the neural mechanisms underlying motor tics, and the testing of potential therapies for tic disorders.
Project description:Primrose syndrome (OMIM 259050) is a rare disorder characterised by macrocephaly with developmental delay, a recognisable facial phenotype, altered glucose metabolism, and other features such as sensorineural hearing loss, short stature, and calcification of the ear cartilage. It is caused by heterozygous variants in ZBTB20, a member of the POK family of transcription repressors. Recently, this gene was shown to have a role in skeletal development through its action on chondrocyte differentiation by repression of SOX9. We describe five unrelated patients with Primrose syndrome and distinct skeletal features including multiple Wormian bones, platybasia, bitemporal bossing, bathrocephaly, slender bones, epiphyseal and spondylar dysplasia. The radiological abnormalities of the skull and the epiphyseal dysplasia were the most consistent findings. This novel constellation of skeletal features expands the phenotypic spectrum of the disorder.
Project description:BackgroundChronic tic disorders are characterized by motor tics that are often preceded by premonitory urges to tic. Functional neuroimaging studies have documented brain activity patterns prior to and during tics, but these studies have not examined whether the activation patterns differ from those seen in normal control subjects performing similar acts.MethodsA novel method was used to compare brain patterns during tics and intentional movements. First, the part of motor cortex specific to each patient's tic movement was identified. The brain areas activating prior to, during, and after that part of motor cortex during tics were then identified by temporally cross-correlating the time course of the localized motor region with activity in other brain areas. Given that motor cortex was active during tic execution, this yielded information regarding the brain areas active prior to, during, and after the movements. The spatiotemporal pattern of coactivation with motor cortex during tics was contrasted with that seen in healthy control subjects during intentional tic-like movements.ResultsData from 16 adult subjects with tic disorders and 16 matched control subjects, who performed intentional movements similar to the patients' tics, revealed nearly identical patterns of cross-correlation to motor cortex throughout the brain in the two groups. However, the supplementary motor area showed a significantly broader profile of cross-correlation to motor cortex during tics than during intentional movements.ConclusionsThese findings highlight the importance of the supplementary motor area in tic generation and may point toward novel intervention strategies for individuals suffering with severe tics.
Project description:INTRODUCTION:Hand stereotypies (HS) are a primary diagnostic criterion for Rett syndrome (RTT) but are difficult to characterize and quantify systematically. METHODS:We collected video on 27 girls (2-12 years of age) with classic RTT who participated in a mecasermin trial. The present study focused exclusively on video analyses, by reviewing two five-minute windows per subject to identify the two most common HS. Three raters with expertise in movement disorders independently rated the five-minute windows using standardized terminology to determine the level of agreement. We iteratively refined the protocol in three stages to improve descriptive accuracy, categorizing HS as "central" or "peripheral," "simple" or "complex," scoring each hand separately. Inter-rater agreement was analyzed using Kappa statistics. RESULTS:In the initial protocol evaluating HS by video, inter-rater agreement was 20.7%. In the final protocol, inter-rater agreement for the two most frequent HS was higher than the initial protocol at 50%. CONCLUSION:Phenotypic variability makes standardized evaluation of HS in RTT a challenge; we achieved only 50% level of agreement and only for the most frequent HS. Therefore, objective measures are needed to evaluate HS.