Unknown

Dataset Information

0

Gene expression profiling in the thiamethoxam resistant and susceptible B-biotype sweetpotato whitefly, Bemisia tabaci.


ABSTRACT: Thiamethoxam has been used as a major insecticide to control the B-biotype sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Due to its excessive use, a high level of resistance to thiamethoxam has developed worldwide over the past several years. To better understand the molecular mechanisms underlying this resistance in B. tabaci, gene profiles between the thiamethoxam-resistant and thiamethoxam-susceptible strains were investigated using the suppression subtractive hybridization (SSH) library approach. A total of 72 and 52 upand down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These expressed sequence tags (ESTs) belong to several functional categories based on their gene ontology annotation. Some categories such as cell communication, response to abiotic stimulus, lipid particle, and nuclear envelope were identified only in the forward library of thiamethoxam-resistant strains. In contrast, categories such as behavior, cell proliferation, nutrient reservoir activity, sequence-specific DNA binding transcription factor activity, and signal transducer activity were identified solely in the reverse library. To study the validity of the SSH method, 16 differentially expressed genes from both forward and reverse SSH libraries were selected randomly for further analyses using quantitative realtime PCR (qRT-PCR). The qRT-PCR results were fairly consistent with the SSH results; however, only 50% of the genes showed significantly different expression profiles between the thiamethoxam-resistant and thiamethoxam-susceptible whiteflies. Among these genes, a putative NAD-dependent methanol dehydrogenase was substantially over-expressed in the thiamethoxamresistant adults compared to their susceptible counterparts. The distributed profiles show that it was highly expressed during the egg stage, and was most abundant in the abdomen of adult females.

SUBMITTER: Xie W 

PROVIDER: S-EPMC3476951 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Gene expression profiling in the thiamethoxam resistant and susceptible B-biotype sweetpotato whitefly, Bemisia tabaci.

Xie Wen W   Yang Xin X   Wang Shao-Ii SI   Wu Qing-jun QJ   Yang Ni-na NN   Li Ru-mei RM   Jiao Xiao-guo XG   Pan Hui-peng HP   Liu Bai-ming BM   Feng Yun-tao YT   Xu Bao-yun BY   Zhou Xu-guo XG   Zhang You-jun YJ  

Journal of insect science (Online) 20120101


Thiamethoxam has been used as a major insecticide to control the B-biotype sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Due to its excessive use, a high level of resistance to thiamethoxam has developed worldwide over the past several years. To better understand the molecular mechanisms underlying this resistance in B. tabaci, gene profiles between the thiamethoxam-resistant and thiamethoxam-susceptible strains were investigated using the suppression subtractive hyb  ...[more]

Similar Datasets

| S-EPMC3650016 | biostudies-literature
2013-07-15 | GSE42102 | GEO
2013-07-15 | E-GEOD-42102 | biostudies-arrayexpress
| S-EPMC5467035 | biostudies-literature
| S-EPMC5405539 | biostudies-literature
| S-EPMC3877088 | biostudies-literature
| S-EPMC4448267 | biostudies-literature