Project description:The asymmetric total synthesis of pyranicin (1) is reported. The butenolide ring was constructed via an asymmetric alkylation/ring-closing metathesis strategy. The three stereocenters in the left-hand tetrahydropyran ring were installed by sequential chiral auxiliary-mediated aldol reactions. Closure of the tetrahydropyran and fusion of the alkyl backbone were affected via a sequential ring-closing metathesis-cross-metathesis strategy.
Project description:The first total synthesis of the furanobutenolide-derived cembranoid diterpenoid havellockate is disclosed. Our convergent strategy employs a Julia-Kocienski olefination to join two enantioenriched fragments to produce a diene that is subsequently used in a propiolic acid esterification/Diels-Alder cascade. This sequence generates the fused carbocyclic core of the natural product in short order. A challenging Zn-mediated Barbier allylation then forges the final C-C bond and also establishes two vicinal stereogenic centers. Finally, a Cu-catalyzed aerobic oxidation facilitates the formation of the β-hydroxybutanolide to complete the total synthesis.
Project description:A concise asymmetric total synthesis of (-)-vindoline (1) is detailed based on a tandem intramolecular [4+2]/[3+2] cycloaddition cascade of a 1,3,4-oxadiazole inspired by the natural product structure, in which the tether linking the initiating dienophile and oxadiazole bears a chiral substituent that controls the facial selectivity of the initiating Diels-Alder reaction and sets absolute stereochemistry of the remaining six stereocenters in the cascade cycloadduct. This key reaction introduces three rings and four C-C bonds central to the pentacyclic ring system setting all six stereocenters and introducing essentially all the functionality found in the natural product in a single step. Implementation of the approach also required the development of a unique ring expansion reaction to provide a six-membered ring suitably functionalized for introduction of the Delta (6, 7)-double bond found in the core structure of vindoline and defined our use of a protected hydroxymethyl group as the substituent used to control the stereochemical course of the cycloaddition cascade.
Project description:An enantiospecific total synthesis of the pyrrole-imidazole natural product cyclooroidin from histidine is described. The key N1-C9 bond is constructed through an intramolecular SN2-type of reaction of a chloro ester. Subsequent imidazole azidation at the 2-position, pyrrole bromination, azide reduction, and deprotection leads to the completion of the synthesis.
Project description:The discovery of illisimonin A in 2017 extended the structural repertoire of the Illicium sesquiterpenoids─a class of natural products known for their high oxidation levels and neurotrophic properties─with a new carbon backbone combining the strained trans-pentalene and norbornane substructures. We report an asymmetric total synthesis of (-)-illisimonin A that traces its tricyclic carbon framework back to a spirocyclic precursor, generated by a tandem-Nazarov/ene cyclization. As crucial link between the spirocyclic key intermediate and illisimonin A, a novel approach for the synthesis of tricyclo[5.2.1.01,5]decanes via radical cyclization was explored. This approach was applied in a two-stage strategy consisting of Ti(III)-mediated cyclization and semipinacol rearrangement to access the natural product's carbon backbone. These key steps were combined with carefully orchestrated C-H oxidations to establish the dense oxidation pattern.
Project description:The therapeutic properties of Curcuma (ginger and turmeric's family) have long been known in traditional medicine. However, only recently have guaiane-type sesquiterpenes extracted from Curcuma phaeocaulis been submitted to biological testing, and their enhanced bioactivity was highlighted. Among these compounds, phaeocaulisin A has shown remarkable anti-inflammatory and anticancer activity, which appears to be tied to the unique bridged acetal moiety embedded in its tetracyclic framework. Prompted by the promising biological profile of phaeocaulisin A and by the absence of a synthetic route for its provision, we have implemented the first enantioselective total synthesis of phaeocaulisin A in 17 steps with 2% overall yield. Our route design builds on the identification of an enantioenriched lactone intermediate, tailored with both a ketone moiety and a conjugated alkene system. Taking advantage of the umpolung carbonyl-olefin coupling reactivity enabled by the archetypal single-electron transfer (SET) reductant samarium diiodide (SmI2), the lactone intermediate was submitted to two sequential SmI2-mediated cyclizations to stereoselectively construct the polycyclic core of the natural product. Crucially, by exploiting the innate inner-sphere nature of carbonyl reduction using SmI2, we have used a steric blocking strategy to render sites SET-unreceptive and thus achieve chemoselective reduction in a complex substrate. Our asymmetric route enabled elucidation of the naturally occurring isomer of phaeocaulisin A and provides a synthetic platform to access other guaiane-type sesquiterpenes from C. phaeocaulis─as well as their synthetic derivatives─for medicinal chemistry and drug design.
Project description:An enantioselective synthesis of marine alkaloid brevisamide was accomplished in a convergent manner. The synthesis utilized an enantioselective hetero-Diels-Alder reaction which sets three chiral centers in compound 11. The synthesis also features a modified Wolff-Kishner reduction, Rubottom oxidation, and Suzuki-Miyaura coupling to furnish brevisamide.
Project description:Ieodomycin B, which shows in vitro antimicrobial activity, was isolated from a marine Bacillus species. A novel asymmetric total synthetic approach to ieodomycin B using commercially available geraniol was achieved. The approach involves the generation of 1,3-trans-dihydroxyl at C-3 and C-5 positions via a Crimmins-modified Evans aldol reaction and a chelation-controlled Mukaiyama aldol reaction of a p-methoxybenzyl-protected aldehyde, as well as the generation of a lactone ring in a deprotection-lactonization one-pot reaction.
Project description:Described in this report is the first total synthesis of elatol, a halogenated sesquiterpene in the chamigrene natural product family. The key disconnections in our synthetic approach include an enantioselective decarboxylative allylation to form the all-carbon quaternary stereocenter and a ring-closing olefin metathesis to concomitantly form the spirocyclic core as well as the fully substituted chlorinated olefin. This strategy represents a general platform for accessing the chamigrene natural product family, as demonstrated by the synthesis of (+)-laurencenone B as an intermediate in our route.
Project description:A new protecting-group-free synthesis of the marine monocyclic ether (+)-brevisamide is reported. The enantioselective synthesis utilizes a key asymmetric Henry reaction and an Achmatowicz rearrangement for the formation of the tetrahydropyran ring. A penultimate Stille cross-coupling allows for an efficient installation of the conjugated (E,E)-diene side chain ultimately delivering (+)-brevisamide.