Unknown

Dataset Information

0

C-Myc suppression of DNA double-strand break repair.


ABSTRACT: c-Myc is a transcriptional factor that functions as a central regulator of cell growth, proliferation, and apoptosis. Overexpression of c-Myc also enhances DNA double-strand breaks (DSBs), genetic instability, and tumorigenesis. However, the mechanism(s) involved remains elusive. Here, we discovered that ?-ray ionizing radiation-induced DSBs promote c-Myc to form foci and to co-localize with ?-H2AX. Conditional expression of c-Myc in HO15.19 c-Myc null cells using the Tet-Off/Tet-On inducible system results in down-regulation of Ku DNA binding and suppressed activities of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and DNA end-joining, leading to inhibition of DSB repair and enhanced chromosomal and chromatid breaks. Expression of c-Myc reduces both signal and coding joins with decreased fidelity during V(D)J recombination. Mechanistically, c-Myc directly interacts with Ku70 protein through its Myc box II (MBII) domain. Removal of the MBII domain from c-Myc abrogates its inhibitory effects on Ku DNA binding, DNA-PKcs, and DNA end-joining activities, which results in loss of c-Myc's ability to block DSB repair and V(D)J recombination. Interestingly, c-Myc directly disrupts the Ku/DNA-PKcs complex in vitro and in vivo. Thus, c-Myc suppression of DSB repair and V(D)J recombination may occur through inhibition of the nonhomologous end-joining pathway, which provides insight into the mechanism of c-Myc in the development of tumors through promotion of genomic instability.

SUBMITTER: Li Z 

PROVIDER: S-EPMC3540944 | biostudies-literature | 2012 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications


c-Myc is a transcriptional factor that functions as a central regulator of cell growth, proliferation, and apoptosis. Overexpression of c-Myc also enhances DNA double-strand breaks (DSBs), genetic instability, and tumorigenesis. However, the mechanism(s) involved remains elusive. Here, we discovered that γ-ray ionizing radiation-induced DSBs promote c-Myc to form foci and to co-localize with γ-H2AX. Conditional expression of c-Myc in HO15.19 c-Myc null cells using the Tet-Off/Tet-On inducible sy  ...[more]

Similar Datasets

| S-EPMC187906 | biostudies-literature
| S-EPMC7457334 | biostudies-literature
| S-EPMC3777511 | biostudies-literature
| S-EPMC4752480 | biostudies-literature
| S-EPMC2519706 | biostudies-literature
| S-EPMC7947261 | biostudies-literature
| S-EPMC6921965 | biostudies-literature
| S-EPMC5547995 | biostudies-literature
| S-EPMC3071034 | biostudies-literature
2016-05-19 | E-GEOD-77184 | biostudies-arrayexpress