Unknown

Dataset Information

0

Proteasome-dependent activation of mammalian target of rapamycin complex 1 (mTORC1) is essential for autophagy suppression and muscle remodeling following denervation.


ABSTRACT: Drastic protein degradation occurs during muscle atrophy induced by denervation, fasting, immobility, and various systemic diseases. Although the ubiquitin-proteasome system is highly up-regulated in denervated muscles, the involvement of autophagy and protein synthesis has been controversial. Here, we report that autophagy is rather suppressed in denervated muscles even under autophagy-inducible starvation conditions. This is due to a constitutive activation of mammalian target of rapamycin complex 1 (mTORC1). We further reveal that denervation-induced mTORC1 activation is dependent on the proteasome, which is likely mediated by amino acids generated from proteasomal degradation. Protein synthesis and ribosome biogenesis are paradoxically increased in denervated muscles in an mTORC1-dependent manner, and mTORC1 activation plays an anabolic role against denervation-induced muscle atrophy. These results suggest that denervation induces not only muscle degradation but also adaptive muscle response in a proteasome- and mTORC1-dependent manner.

SUBMITTER: Quy PN 

PROVIDER: S-EPMC3542997 | biostudies-literature | 2013 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Proteasome-dependent activation of mammalian target of rapamycin complex 1 (mTORC1) is essential for autophagy suppression and muscle remodeling following denervation.

Quy Pham Nguyen PN   Kuma Akiko A   Pierre Philippe P   Mizushima Noboru N  

The Journal of biological chemistry 20121203 2


Drastic protein degradation occurs during muscle atrophy induced by denervation, fasting, immobility, and various systemic diseases. Although the ubiquitin-proteasome system is highly up-regulated in denervated muscles, the involvement of autophagy and protein synthesis has been controversial. Here, we report that autophagy is rather suppressed in denervated muscles even under autophagy-inducible starvation conditions. This is due to a constitutive activation of mammalian target of rapamycin com  ...[more]

Similar Datasets

| S-EPMC2658096 | biostudies-literature
| S-EPMC4777855 | biostudies-literature
| S-EPMC3951878 | biostudies-literature
| S-EPMC3207648 | biostudies-literature
| S-EPMC4641790 | biostudies-literature
| S-EPMC4416842 | biostudies-literature
| S-EPMC2827328 | biostudies-literature
| S-EPMC3173133 | biostudies-literature
| S-EPMC3125343 | biostudies-literature
| S-EPMC4382310 | biostudies-literature