Emergence of a New Delhi metallo-β-lactamase (NDM-1)-encoding gene in clinical Escherichia coli isolates recovered from companion animals in the United States.
Emergence of a New Delhi metallo-β-lactamase (NDM-1)-encoding gene in clinical Escherichia coli isolates recovered from companion animals in the United States.
Project description:Carbapenems are broad-spectrum antibiotics widely used for the treatment of human infections caused by multidrug-resistant (MDR) Gram-negative bacteria. However, emerging carbapenemase-producing Enterobacterales (CPE) are rising as a public threat to human and animal health. We screened clinical bacterial isolates from 241 dogs and 18 cats hospitalized at Veterinary Medical Teaching Hospital, Seoul National University, from 2018 to 2020 for carbapenemase production. In our study, 5 strains of metallo-β-lactamase NDM-5-producing Escherichia coli and Klebsiella pneumoniae were isolated from 4 different dogs. Multilocus sequence typing (MLST) results showed that all E. coli strains were ST410 and all K. pneumoniae strains were ST378. Whole genome analysis of the plasmid showed that blaNDM-5 is carried on a IncX3 plasmid, showing a high concordance rate with plasmids detected worldwide in human and animal isolates. The blaNDM gene was associated with the bleMBL gene and the ISAba125 element, truncated with the IS5 element. The results of this study show that CPE has already become as a threat to both animals and humans in our society, posing the necessity to solve it in terms of "One Health". Therefore, preventive strategies should be developed to prevent the spread of CPE in animal and human societies.
Project description:We report isolation of a New Delhi metallo-β-lactamase-5-producing carbapenem-resistant Escherichia coli sequence type 167 from companion animals in the United States. Reports of carbapenem-resistant Enterobacteriaceae in companion animals are rare. We describe a unique cluster of blaNDM-5-producing E. coli in a veterinary hospital.
Project description:UnlabelledBACKGOUND & OBJECTIVES: Resistance to carbapenems in Gram-negative bacteria conferred by NDM-1 is a global health problem. We investigated the occurrence of NDM-1 in clinical isolates of Gram-negative bacilli in a tertiary care hospital in Kashmir valley, India.MethodsGram-negative bacilli from different clinical isolates were included in the study. Antimicrobial susceptibility was performed by Kirby Bauer disk diffusion method and interpreted using Clinical Laboratory Standards Institute (CLSI) guidelines. Isolates resistant to carbapenems were subjected to different phenotypic test such as modified Hodge test (MHT), boronic acid and oxacillin based MHT ( BA-MHT and OXA-MHT), combined disk test and minimum inhibitory concentration (MIC) with imipenem and imipenem -EDTA for determination of class B metallo enzymes. Presence of blaNDM-1 gene was established by PCR and confirmed by sequencing.ResultsOf the total 1625 Gram-negative isolates received, 100 were resistant to imipenem. Of the 100 isolates, 55 (55%) were positive by modified Hodge test indicating carbapenemase production. Of the 100 isolates tested by MHT, BA-MHT and OXA-MHT, 29 (29%) isolates belonged to Class A and 15 (15%) to Class B, while 56 (56%) isolates were negative. Of the 15 class B metallo beta lactamase producers, nine carried the bla(NDM-1) gene. NDM-1 was found among Escherichia coli (2 isolates), Klebsiella pneumoniae (2 isolates), Citrobacter freundii (3 isolates), Acinetobacter spp (1 isolate), and one isolate of Pseudomonas aeruginosa. Isolates were resistant to all antibiotic tested except polymyxin B and tigecycline.Interpretation & conclusionsOur study showed the presence of clinical isolates expressing NDM-1 in Srinagar, Jammu & Kashmir, India. These isolates harbour plasmid mediated multiple drug resistant determinants and can disseminate easily across several unrelated genera. To halt their spread, early identification of these isolates is mandatory.
Project description:Antibiotic resistance in bacterial pathogens poses a serious threat to human health and the metallo-β-lactamase (MBL) enzymes are responsible for much of this resistance. The recently identified New Delhi MBL 1 (NDM-1) is a novel member of this family that is capable of hydrolysing a wide variety of clinically important antibiotics. Here, the crystal structure of NDM-1 from Klebsiella pneumoniae is reported and its structure and active site are discussed in the context of other recently deposited coordinates of NDM-1.
Project description:This work reports, for the first time, the presence of New Delhi metallo-β-lactamase 1 (NDM-1) in Pseudomonas aeruginosa. Moreover, this is the first report of the NDM-1 presence in the Balkan region. Cosmid gene libraries of carbapenem-nonsusceptible Pseudomonas aeruginosa clinical isolates MMA83 and MMA533 were screened for the presence of metallo-β-lactamases. Accordingly, both MMA83 and MMA533 carried the bla(NDM-1) gene. Pulsed-field gel electrophoresis (PFGE) analysis indicated that strains MMA83 and MMA533 belonged to different clonal groups. Five additional isolates from different patients clonally related to either MMA83 or MMA533 were found to be NDM-1 positive.
Project description:Outbreaks of infection occur more often than they are reported in most developing countries, largely due to poor diagnostic services. A Klebsiella species bacteremia outbreak in a newborn unit with high mortality was recently encountered at a location being surveilled for childhood bacteremia. These surveillance efforts offered the opportunity to determine the cause of this neonatal outbreak. In this report, we present the whole-genome sequences of New Delhi metallo-β-lactamase (NDM-5)-containing Klebsiella quasipneumoniae subsp. similipneumoniae bloodstream isolates from a neonatal bacteremia outbreak at a tertiary hospital in Nigeria and as part of the largest collection of K. pneumoniae bloodstream isolates from children in Africa. Comparative analysis of the genetic environment surrounding the NDM-5 genes revealed nearly perfect sequence identity to blaNDM-5-bearing IncX3-type plasmids from other members of the EnterobacteriaceaeIMPORTANCE Carbapenem-resistant Klebsiella pneumoniae is of global health importance, yet there is a paucity of genome-based studies in Africa. Here we report fatal blood-borne NDM-5-producing K. quasipneumoniae subsp. similipneumoniae infections from Nigeria, Africa. New Delhi metallo-β-lactamase (NDM)-producing Klebsiella spp. are responsible for high mortality and morbidity, with the NDM-5 variant showing elevated carbapenem resistance. The prevalence of NDM-5 in Klebsiella has been limited primarily to K. pneumoniae, with only one isolate being collected from Africa. During an outbreak of sepsis in a teaching hospital in Nigeria, five NDM-5-producing K. quasipneumoniae subsp. similipneumoniae sequence type 476 isolates were identified. Given the increased resistance profile of these strains, this study highlights the emerging threat of blaNDM-5 dissemination in hospital environments. The observation of these NDM-5-producing isolates in Africa stresses the urgency to improve monitoring and clinical practices to reduce or prevent the further spread of resistance.
Project description:Of 250 clinical isolates of Escherichia coli obtained in Nepal, 38 were carbapenem resistant, with MICs of imipenem or meropenem of ≥4 μg/ml. All 38 isolates harbored the following blaNDMs: blaNDM-1, blaNDM-3, blaNDM-4, blaNDM-5, blaNDM-7, blaNDM-12, and blaNDM-13 Most of these isolates also harbored the 16S rRNA methylase gene(s) armA, rmtB, and/or rmtC.
Project description:New Delhi metallo-?-lactmase-1 (NDM-1) has recently attracted extensive attention for its biological activities to catalyze the hydrolysis of almost all of ?-lactam antibiotics. To study the catalytic property of NDM-1, the steady-kinetic parameters of NDM-1 toward several kinds of ?-lactam antibiotics have been detected. It could effectively hydrolyze most ?-lactams (k cat/K m ratios between 0.03 to 1.28 µmol?¹.s?¹), except aztreonam. We also found that thiophene-carboxylic acid derivatives could inhibit NDM-1 and have shown synergistic antibacterial activity in combination with meropenem. Flexible docking and quantum mechanics (QM) study revealed electrostatic interactions between the sulfur atom of thiophene-carboxylic acid derivatives and the zinc ion of NDM-1, along with hydrogen bond between inhibitor and His189 of NDM-1. The interaction models proposed here can be used in rational design of NDM-1 inhibitors.
Project description:New Delhi metallo-β-lactamase-1 (NDM-1) is capable of hydrolyzing nearly all β-lactam antibiotics, posing an emerging threat to public health. There are currently less effective treatment options for treating NDM-1 positive "superbug", and no promising NDM-1 inhibitors were used in clinical practice. In this study, structure-activity relationship based on thiosemicarbazone derivatives was systematically characterized and their potential activities combined with meropenem (MEM) were evaluated. Compounds 19bg and 19bh exhibited excellent activity against 10 NDM-positive isolate clinical isolates in reversing MEM resistance. Further studies demonstrated compounds 19bg and 19bh were uncompetitive NDM-1 inhibitors with Ki = 0.63 and 0.44 μmol/L, respectively. Molecular docking speculated that compounds 19bg and 19bh were most likely to bind in the allosteric pocket which would affect the catalytic effect of NDM-1 on the substrate meropenem. Toxicity evaluation experiment showed that no hemolysis activities even at concentrations of 1000 mg/mL against red blood cells. In vivo experimental results showed combination of MEM and compound 19bh was markedly effective in treating infections caused by NDM-1 positive strain and prolonging the survival time of sepsis mice. Our finding showed that compound 19bh might be a promising lead in developing new inhibitor to treat NDM-1 producing superbug.