Project description:Traumatic brachial plexus injuries are a devastating injury that results in partial or total denervation of the muscles of the upper extremity. Treatment options that include neurolysis, nerve grafting, or neurotization (nerve transfer) has become an important procedure in the restoration of function in patients with irreparable preganglionic lesions. Restoration of elbow flexion is the primary goal in treating patients with severe brachial plexus injuries. Nerve transfers are used when spinal roots are avulsed, and proximal stumps are not available. In the present study, we analyze the results obtained in 20 patients treated with phrenic-musculocutaneous nerve transfer to restore elbow flexion after brachial plexus injuries. A consecutive series of 25 adult patients (21 men and 4 women) with a brachial plexus traction/crush lesion were treated with phrenic-musculocutaneous nerve transfer, but only 20 patients (18 men and 2 women) were followed and evaluated for at least 2 years postoperatively. All patients had been referred from other institutions. At the initial evaluation, eight patients received a diagnosis of C5-6 brachial plexus nerve injury, and in the other 12 patients, a complete brachial plexus injury was identified. Reconstruction was undertaken if no clinical or electrical evidence of biceps muscle function was seen by 3 months post injury. Functional elbow flexion was obtained in the majority of cases by phrenic-musculocutaneous nerve transfer (14/20, 70%). At the final follow-up evaluation, elbow flexion strength was a Medical Research Council Grade 5 in two patients, Grade 4 in four patients, Grade 3 in eight patients, and Grade 2 or less in six patients. Transfer involving the phrenic nerve to restore elbow flexion seems to be an appropriate approach for the treatment of brachial plexus root avulsion. Traumatic brachial plexus injury is a devastating injury that result in partial or total denervation of the muscles of the upper extremity. Treatment options include neurolysis, nerve grafting, or neurotization (nerve transfer). Neurotization is the transfer of a functional but less important nerve to a denervated more important nerve. It has become an important procedure in the restoration of function in patients with irreparable preganglionic lesions. Restoration of elbow flexion is the primary goal in treating patients with severe brachial plexus injuries. Nerve transfers are used when spinal roots are avulsed, and proximal stumps are not available. Newer extraplexal sources include the ipsilateral phrenic nerve as reported by Gu et al. (Chin Med J 103:267-270, 1990) and contralateral C7 as reported by Gu et al. (J Hand Surg [Br] 17(B):518-521, 1992) and Songcharoen et al. (J Hand Surg [Am] 26(A):1058-1064, 2001). These nerve transfers have been introduced to expand on the limited donors. The phrenic nerve and its anatomic position directly within the surgical field makes it a tempting source for nerve transfer. Although not always, in cases of complete brachial plexus avulsion, the phrenic nerve is functioning as a result of its C3 and C4 major contributions. In the present study, we analyze the results obtained in 20 patients treated with phrenic-musculocutaneous nerve transfer to restore elbow flexion after brachial plexus injuries.
Project description:PurposeThe upper limb single-joint hybrid assistive limb (HAL), a wearable robot that can support elbow flexion and extension motions, was originally used to rehabilitate patients with stroke. We report the preliminary outcomes of serial HAL use for rehabilitation following nerve transfer (NT) for elbow flexion reconstruction in brachial plexus injuries.MethodsHybrid assistive limb training consisted of virtual and power training courses. Virtual training was started before HAL picked up motor unit potentials (MUPs) from the target muscle through electrodes attached to the skin overlying the original donor muscles. Power training was started after the maturation of MUPs, the stage where the MUPs were strong to be recognized to arise from the target muscles. Hybrid assistive limb assist at this stage was carried out by decreasing the settings in an inversely proportionate manner to the increase in target muscle strength. Fourteen patients underwent HAL training following NT. Eight patients had the intercostal nerve to musculocutaneous nerve (ICN-MCN) transfer, and their postoperative functional outcomes and rehabilitation performance were compared to 50 patients with ICN-MCN transfer who underwent conventional postoperative rehabilitation with electromyographic biofeedback (EMG-BF) techniques.ResultsComparison of the long-term results following ICN-MCN transfer between EMG-BF and HAL groups showed similar follow-up times, elbow flexion range of motion, or power of elbow flexion assessed using the British Medical Council grade, and quantitative measurement using Kin-Com dynamometer. However, the number of rehabilitation sessions was significantly fewer in the HAL than EMG-BF group.ConclusionHAL training accelerated patients' learning to convert the original muscle function into elbow flexion following NT by replicating elbow flexion during the pre-MUP detection stage and shortening the rehabilitation time.Type of study/level of evidenceTherapeutic IV.
Project description:Adult traumatic brachial plexus injuries can have devastating effects on upper extremity function. Although neurolysis, nerve repair, and nerve grafting have been used to treat injuries to the plexus, nerve transfer makes use of an undamaged nerve to supply motor input over a relatively short distance to reinnervate a denervated muscle. A review of several recent innovations in nerve transfer surgery for brachial plexus injuries is illustrated with surgical cases performed at this institution.
Project description:Radiation-induced brachial plexopathy is an uncommon but devastating late complication seen in patients receiving radiation therapy to the chest wall and axilla. Treatment options are unfortunately limited. We report a case of a 59-year-old woman treated with radiation therapy for breast cancer 12 years earlier, who presented with loss of elbow flexion and marked shoulder weakness. Electromyogram and intraoperative stimulation of the musculocutaneous nerve branches were consistent with a proximal motor nerve conduction block. Microsurgical transfer of median and ulnar nerve fascicles to the biceps and brachialis branches of the musculocutaneous nerve, respectively, were performed. The patient recovered MRC grade 4/5 elbow flexion after surgery. The characteristics of this disorder and surgical treatment options are reviewed.
Project description:We present 4 children between 6 and 13 years suffering from severe sequelae after a total obstetric brachial plexus lesion resulting in a hand without functional active long finger flexion. They had successfully reanimated long finger flexion using a free functional gracilis muscle transfer. These children initially presented a total obstetric brachial plexus palsy without neurotisation of the lower trunk in an early microsurgical nerve reconstruction procedure. We describe our indications for this complex microsurgical procedure, the surgical technique and the outcome.
Project description:In the study, the functional recovery and relative comprehensive quality of life of cases of global brachial plexus treated with free functioning muscle transfers were investigated. Patients who received functioning gracilis muscle transfer between August 1999 and October 2014 to reconstruct elbow flexion, wrist and fingers extension were recruited. The mean age of the patients was 26.36 (range, 16-42) years. The mean period of time from gracilis transfer to the last follow-up was 54.5 months (range, 12-185 months). Muscle power, active range of motion of the elbow flexion, wrist extension, and total active fingers extension were recorded. SDS, SAS and DASH questionnaires were given to estimate patients' quality of life. 35.71% reported good elbow flexion and 50.00% reported excellent elbow flexion. The average ROM of the elbow flexion was 106.5° (range, 0-142°) and was 17.00° (range, 0-72°) for wrist extension. The average DASH score was 51.14 (range, 17.5-90.8). The prevalence of anxiety and depression were 42.86% and 45.24%. Thrombosis and bowstringing were the most common short and long-term complications. Based on these findings, free gracilis transfer using accessory nerve as donor nerve is a satisfactory treatment to reconstruct the elbow flexion and wrist extension in global-brachial-plexus-injured patients.
Project description:Restoration of shoulder function is one of the most critical goals of treatment of brachial plexus injuries. Primary repair or nerve grafting of avulsion injuries of the upper brachial plexus in adults often leads to poor recovery. Nerve transfers have provided an alternative treatment with great potential for improved return of function. Many different nerves have been utilized as donor nerves for transfer to the suprascapular nerve and axillary nerve for return of shoulder function with variable results. As our knowledge of shoulder neuromuscular anatomy and physiology improves and our experience with nerve transfers increases, so evolve the specific transfer procedures. This article presents a technique and rationale for reconstructing shoulder function by transferring the distal spinal accessory nerve to the suprascapular nerve and the nerve branch to the medial head of the triceps to the axillary nerve, both through a posterior approach.
Project description:IntroductionCompressive neuropathy of the brachial plexus is a common issue following laparoscopic and robotic surgeries.Case reportA 71-year-old male, post-lumbar spinal surgery, presented with excruciating right upper extremity pain and paresthesias. A supraclavicular brachial plexus (SBP) block with bupivacaine provided significant pain relief, lasting 36 hours. Subsequent physical therapy led to gradual pain and weakness improvement in compressive neuropathy.DiscussionThe SBP block, facilitated by ultrasound guidance, is a safe procedure with few serious complications. It proves beneficial for managing postoperative compressive neuropathy, allowing patients to break pain cycles and participate in rehabilitation.ConclusionThe SBP block is an effective addition to the management of postoperative compressive neuropathy, given its ease, safety, and potency. Although regional anesthesia provides only temporary relief, patients can experience a break in debilitating pain cycles associated with compressive neuropathy.
Project description:BackgroundThe etiology of elbow flexion contracture in children with brachial plexus birth palsy remains unclear. We hypothesized that the long head of the biceps brachii muscle assists with shoulder stabilization in children with brachial plexus birth palsy and that overactivity of the long head during elbow and shoulder activity is associated with an elbow flexion contracture.MethodsTwenty-one patients with brachial plexus birth palsy-associated elbow flexion contracture underwent testing with surface electromyography. Twelve patients underwent repeat testing with fine-wire electromyography. Surface electrodes were placed on the muscle belly, and fine-wire electrodes were inserted bilaterally into the long and short heads of the biceps brachii. Patients were asked to perform four upper extremity tasks: elbow flexion-extension, hand to head, high reach, and overhead ball throw. The mean duration of muscle activity in the affected limb was compared with that in the contralateral, unaffected limb, which was used as a control. Three-dimensional motion analysis, surface dynamometry, and validated function measures were used to evaluate upper extremity kinematics, elbow flexor-extensor muscle imbalance, and function.ResultsThe mean activity duration of the long head of the biceps brachii muscle was significantly higher in the affected limb as compared with the contralateral, unaffected limb during hand-to-head tasks (p = 0.02) and high-reach tasks (p = 0.03). No significant differences in mean activity duration were observed for the short head of the biceps brachii muscle between the affected and unaffected limbs. Isometric strength of elbow flexion was not significantly higher than that of elbow extension in the affected limb (p = 0.11).ConclusionsOveractivity of the long head of the biceps brachii muscle is associated with and may contribute to the development of elbow flexion contracture in children with brachial plexus birth palsy. Elbow flexion contracture may not be associated with an elbow flexor-extensor muscle imbalance, as previously hypothesized. The negative impact of elbow flexion contracture on upper extremity function warrants future research in the development of preventive and therapeutic techniques to address elbow flexion contractures in children with brachial plexus birth palsy.
Project description:Biomechanical models are useful to assess the effect of muscular forces on bone structure. Using skeletal remains, we analyze pronator teres rotational efficiency and its force components throughout the entire flexion-extension and pronation-supination ranges by means of a new biomechanical model and 3D imaging techniques, and we explore the relationship between these parameters and skeletal structure. The results show that maximal efficiency is the highest in full elbow flexion and is close to forearm neutral position for each elbow angle. The vertical component of pronator teres force is the highest among all components and is greater in pronation and elbow extension. The radial component becomes negative in pronation and reaches lower values as the elbow flexes. Both components could enhance radial curvature, especially in pronation. The model also enables to calculate efficiency and force components simulating changes in osteometric parameters. An increase of radial curvature improves efficiency and displaces the position where the radial component becomes negative towards the end of pronation. A more proximal location of pronator teres radial enthesis and a larger humeral medial epicondyle increase efficiency and displace the position where this component becomes negative towards forearm neutral position, which enhances radial curvature. Efficiency is also affected by medial epicondylar orientation and carrying angle. Moreover, reaching an object and bringing it close to the face in a close-to-neutral position improve efficiency and entail an equilibrium between the forces affecting the elbow joint stability. When the upper-limb skeleton is used in positions of low efficiency, implying unbalanced force components, it undergoes plastic changes, which improve these parameters. These findings are useful for studies on ergonomics and orthopaedics, and the model could also be applied to fossil primates in order to infer their locomotor form. Moreover, activity patterns in human ancient populations could be deduced from parameters reported here.