Project description:Lactic acid bacteria (LAB) are commonly used as probiotics; however, not all LAB strains have the same beneficial effects. To successfully use LAB as probiotics in canines, LAB species should originate from the canine intestinal tract as they display host specificity. The objective of this study was to investigate the phenotypic and genomic traits of potential probiotic LAB isolated from canine fecal samples. Twenty LAB samples were evaluated for their potential probiotic characteristics including resistance to low pH, bile salts, hydrophobicity, auto-aggregation, co-aggregation, adhesion to epithelia or mucosa, and production of inhibitory compounds. Additionally, we evaluated their safety and other beneficial effects on canine health, such as DPPH free radical scavenging, and β-galactosidase. Four strains demonstrated potential probiotic characteristics and were selected: Enterococcus hirae Pom4, Limosilactobacillus fermentum Pom5, Pediococcus pentosaceus Chi8, and Ligilactobacillus animalis FB2. Safety evaluations showed that all strains lacked hemolytic activity, could not produce biogenic amines, and did not carry any pathogenic genes. In addition, L. fermentum Pom5 and P. pentosaceus Chi8 displayed susceptibility to all antibiotics and concordant with the absence of antibiotic resistance genes. Based on their phenotypic and genomic characteristics, L. fermentum Pom5 and P. pentosaceus Chi8 were identified as potential probiotic candidates for canines.
Project description:Probiotics, defined as viable microorganisms that enhance host health when consumed through the diet, exert their effects through mechanisms such as strengthening the immune system, enhancing resistance to infectious diseases, and improving tolerance to stressful conditions. Driven by a growing market, research on probiotics in aquaculture is a burgeoning field. However, the identification of new probiotics presents a complex challenge, necessitating careful consideration of both the safety and efficacy of the microorganisms employed. This review aims to delineate the most utilized and effective methods for identifying probiotics. The most effective approach currently combines in silico analysis of genomic sequences with in vitro and in vivo experiments. Two main categories of genetic traits are analyzed using bioinformatic tools: those that could harm the host or humans (e.g., toxin production, antibiotic resistance) and those that offer benefits (e.g., production of helpful compounds, and enzymes). Similarly, in vitro experiments allow us to examine the safety of a probiotic but also its effectiveness (e.g., ability to adhere to epithelia). Finally, in vivo experiments allow us to study the effect of probiotics on fish growth and health, including the ability of the probiotic to manipulate the host's microbiota and the ability to mitigate the infections. This review comprehensively analyzes these diverse aspects, with a particular focus on the potential of studying the interaction between bacterial pathogens and probiotics through these integrated methods.
Project description:The manufacturing processes of commercial probiotic strains may be affected in different ways in the attempt to optimize yield, costs, functionality, or stability, influencing gene expression, protein patterns, or metabolic output. Aim of this work was to compare different samples of a high concentration (450 billion bacteria) multispecies (8 strains) formulation produced at two different manufacturing sites, USA (US) and Italy (IT), by applying functional proteomics analyses. Several protein-profile differences were detected between IT- and US-made products, with Lactobacillus paracasei, Streptococcus thermophilus, and Bifidobacteria being the main affected probiotics/microorganisms. Integration of omics platforms with in vivo analysis emerged as a powerful tool to assess manufacturing procedures.
Project description:Engineered probiotics are a kind of new microorganisms produced by modifying original probiotics through gene editing. With the continuous development of tools and technology progresses, engineering renovation of probiotics are becoming more diverse and more feasible. In the past few years there have been some advances in the development of engineered probiotics that will benefit humankind. This review briefly introduces the theoretical basis of gene editing technology and focuses on some recent engineered probiotics researches, including inflammatory bowel disease, bacterial infection, tumor and metabolic diseases. It is hoped that it can provide help for the further development of genetically modified microorganisms, stimulate the potential of engineered probiotics to treat intractable diseases, and provide new ideas for the diagnosis of some diseases or some industrial production.
Project description:The enteric microbiota contribute to gastrointestinal health, and their disruption has been associated with many disease states. Some patients consume probiotic products in attempts to manipulate the intestinal microbiota for health benefit. It is important for gastroenterologists to improve their understanding of the mechanisms of probiotics and the evidence that support their use in practice. Clinical trials have assessed the therapeutic effects of probiotic agents for several disorders, including antibiotic- or Clostridium difficile-associated diarrhea, irritable bowel syndrome, and the inflammatory bowel diseases. Although probiotic research is a rapidly evolving field, there are sufficient data to justify a trial of probiotics for treatment or prevention of some of these conditions. However, the capacity of probiotics to modify disease symptoms is likely to be modest and varies among probiotic strains-not all probiotics are right for all diseases. The current review provides condition-specific rationale for using probiotic therapy and literature-based recommendations.
Project description:Probiotics are defined as live micro-organisms, which when administered in adequate amounts, confer health benefits on the host. Scientists have isolated various strains of Lactobacilli from human milk (such as Lactobacillus fermentum and Lactobacillus salivarius), and the presence of these organisms is thought to be protective against breast infections, or mastitis. Trials of probiotics for treating mastitis in dairy cows have had mixed results: some successful and others unsuccessful. To date, only one trial of probiotics to treat mastitis in women and one trial to prevent mastitis have been published. Although trials of probiotics to prevent mastitis in breastfeeding women are still in progress, health professionals in Australia are receiving marketing of these products. High quality randomised controlled trials are needed to assess the effectiveness of probiotics for the prevention and/or treatment of mastitis.