Project description:Significant interest in the pharmacogenetics of warfarin therapy has been triggered with the recent package insert update that highlights the potential role of pharmacogenetics in improving the safety and effectiveness of warfarin. We review the evidence of the influence of the two key genes of interest, the cytochrome P450 2C9 gene, CYP2C9, and the vitamin K epoxide reductase complex 1 gene, VKORC1, on warfarin response and discuss the implications of current knowledge for clinical practice. The influence of CYP2C9 and VKORC1 genotypes on warfarin dose requirements has been consistently demonstrated in diverse racial and ethnic patient groups in observational studies and randomized clinical trials. Dosing algorithms have been developed that incorporate clinical, demographic, and genetic information to help select a warfarin starting dose. Furthermore, CYP2C9 variant genotypes have been associated with a significantly increased risk of serious bleeding events. However, evidence to date from prospective, controlled studies has not demonstrated an added benefit of incorporating genotype-guided therapy in improving anticoagulation control or in preventing or reducing the risk of hemorrhagic or thromboembolic complications. Research efforts designed to evaluate the effectiveness of genotype-guided therapy in improving outcomes are under way. However, the routine use of CYP2C9 and VKORC1 genotyping in the general patient population who begin warfarin therapy is not supported by evidence currently available.
Project description:The cytochrome P450 (CYP) 2C9 and vitamin K epoxide reductase complex 1 (VKORC1) genotypes have been strongly and consistently associated with warfarin dose requirements, and dosing algorithms incorporating genetic and clinical information have been shown to be predictive of stable warfarin dose. However, clinical trials evaluating genotype-guided warfarin dosing produced mixed results, calling into question the utility of this approach. Recent trials used surrogate markers as endpoints rather than clinical endpoints, further complicating translation of the data to clinical practice. The present data do not support genetic testing to guide warfarin dosing, but in the setting where genotype data are available, use of such data in those of European ancestry is reasonable. Outcomes data are expected from an on-going trial, observational studies continue, and more work is needed to define dosing algorithms that incorporate appropriate variants in minority populations; all these will further shape guidelines and recommendations on the clinical utility of genotype-guided warfarin dosing.
Project description:This document is an update to the 2011 Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C9 and VKORC1 genotypes and warfarin dosing. Evidence from the published literature is presented for CYP2C9, VKORC1, CYP4F2, and rs12777823 genotype-guided warfarin dosing to achieve a target international normalized ratio of 2-3 when clinical genotype results are available. In addition, this updated guideline incorporates recommendations for adult and pediatric patients that are specific to continental ancestry.
Project description:BackgroundPharmacogenetics aims to identify the genetic factors participating in the heterogeneity of drug response. The ultimate goal is to provide personalized treatment by identifying responders and non-responders, individuals at risk of developing drug adverse effects, and by adjusting dosage. Several studies have been performed in Parkinson's disease (PD), to investigate drug response variability according to genetic factors for dopamine replacement therapies.MethodsWe performed a systematic literature search of articles related to pharmacogenetic studies in PD, and found 47 studies.FindingsMotor response and adverse reactions to dopaminergic drugs were associated with genes encoding enzymes of their metabolism as well as their receptors or targets. Despite some interesting results, considerable work remains to be done to replicate and validate their clinical relevance before translation into clinical practice.ConclusionsThere are currently no guidelines published for pharmacogenetic factors related to PD drugs. More research is need in this field in order to improve our knowledge in drug response variability in PD. Algorithms taking into account clinical, pharmacological, and genetic factors are probably the most promising way to help for a personalized medicine in PD.
Project description:Since the introduction in the 1950s, warfarin has become the commonly used oral anticoagulant for the prevention of thromboembolism in patients with deep vein thrombosis, atrial fibrillation or prosthetic heart valve replacement. Warfarin is highly efficacious; however, achieving the desired anticoagulation is difficult because of its narrow therapeutic window and highly variable dose response among individuals. Bleeding is often associated with overdose of warfarin. There is overwhelming evidence that an individual's warfarin maintenance is associated with clinical factors and genetic variations, most notably polymorphisms in cytochrome P450 2C9 and vitamin K epoxide reductase subunit 1. Numerous dose-prediction algorithms incorporating both genetic and clinical factors have been developed and tested clinically. However, results from major clinical trials are not available yet. This review aims to provide an overview of the field of warfarin which includes information about the drug, genetics of warfarin dose requirements, dosing algorithms developed and the challenges for the clinical implementation of warfarin pharmacogenetics.
Project description:Pharmacogenetic/pharmacogenomic (PGx) approaches to psychopharmacology aim to identify clinically meaningful predictors of drug efficacy and/or side-effect burden. To date, however, PGx studies in psychiatry have not yielded compelling results, and clinical utilization of PGx testing in psychiatry is extremely limited. In this review, the authors provide a brief overview on the status of PGx studies in psychiatry, review the commercialization process for PGx tests and then discuss methodological considerations that may enhance the potential for clinically applicable PGx tests in psychiatry. The authors focus on design considerations that include increased ascertainment of subjects in the earliest phases of illness, discuss the advantages of drug-induced adverse events as phenotypes for examination and emphasize the importance of maximizing adherence to treatment in pharmacogenetic studies. Finally, the authors discuss unique aspects of pharmacogenetic studies that may distinguish them from studies of other complex traits. Taken together, these data provide insights into the design and methodological considerations that may enhance the potential for clinical utility of PGx studies.
Project description:Warfarin is a widely used anticoagulant with a narrow therapeutic index and large interpatient variability in the dose required to achieve target anticoagulation. Common genetic variants in the cytochrome P450-2C9 (CYP2C9) and vitamin K-epoxide reductase complex (VKORC1) enzymes, in addition to known nongenetic factors, account for ~50% of warfarin dose variability. The purpose of this article is to assist in the interpretation and use of CYP2C9 and VKORC1 genotype data for estimating therapeutic warfarin dose to achieve an INR of 2-3, should genotype results be available to the clinician. The Clinical Pharmacogenetics Implementation Consortium (CPIC) of the National Institutes of Health Pharmacogenomics Research Network develops peer-reviewed gene-drug guidelines that are published and updated periodically on http://www.pharmgkb.org based on new developments in the field.(1).
Project description:UnlabelledWarfarin was first introduced in the 1950s and quickly became the most commonly used oral anticoagulant for the prevention of thromboembolism in patients with deep vein thrombosis, atrial fibrillation, or prosthetic heart valve replacement. Warfarin is highly effective in treating these diseases; however, several factors prevent it from even wider use, especially in Asian populations. It is difficult for patients on warfarin to reach desired anticoagulation due to its narrow therapeutic index and highly variable dose response. The major adverse event is bleeding which is associated with overdose of warfarin. Clinical and genetic factors such as polymorphisms in CYP2C9 and VKORC1 associated with an individual's warfarin maintenance have been identified. More than 20 dose prediction algorithms incorporating both genetic and clinical factors have been developed, and some of them have been tested clinically. However, most of the algorithms were tested in small populations. Several major clinical trials are now underway. This review aims to provide an overview of the field of warfarin which includes information about the drug, genetics of warfarin dose requirements, dosing algorithms developed and the challenges of clinical implementation of warfarin pharmacogenetics.Key wordsCYP2C9; Pharmacogenetics; VKORC1; Warfarin.
Project description:After a decade of clinical investigation, pharmacogenetic-guided initial dosing of warfarin is at a crossroads. Genotypes for two single nucleotide polymorphisms (SNPs) in the cytochrome P 450 2C9 gene, affecting warfarin metabolism, and one SNP in vitamin K reductase complex 1 gene, affecting warfarin sensitivity, account for approximately 30% of therapeutic warfarin dosing variability in whites and Asians. Incorporating this genetic information, along with patient's age, body size, and other clinical information improves the accuracy of initial warfarin dosing. Currently, there is insufficient evidence to support the clinical benefits and cost effectiveness of routine warfarin pharmacogenetics. Results from ongoing international randomized clinical trials should provide clarity about the place of warfarin pharmacogenetics in personalized medicine.