Tetrasubstituted olefins through the stereoselective catalytic intermolecular conjugate addition of simple alkenes to α,β-unsaturated carbonyl compounds.
Tetrasubstituted olefins through the stereoselective catalytic intermolecular conjugate addition of simple alkenes to α,β-unsaturated carbonyl compounds.
Project description:Modular and regio-/stereoselective syntheses of all-carbon tetrasubstituted olefins from simple alkene materials remain a challenging project. Here, we demonstrate that a remote-carbonyl-directed palladium-catalyzed Heck/isomerization/C(sp2)-H arylation sequence enables unactivated 1,1-disubstituted alkenes to undergo stereoselective terminal diarylation with aryl iodides, thus offering a concise approach to construct stereodefined tetrasubstituted olefins in generally good yields under mild conditions; diverse carbonyl groups are allowed to act as directing groups, and various aryl groups can be introduced at the desired position simply by changing aryl iodides. The stereocontrol of the protocol stems from the compatibility between the E/Z isomerization and the alkenyl C(sp2)-H arylation, where the vicinal group-directed C(sp2)-H arylation of the Z-type intermediate product thermodynamically drives the reversible E to Z isomerization. Besides, the carbonyl group not only promotes the Pd-catalyzed sequential transformations of unactivated alkenes by weak coordination, but also avoids byproducts caused by other possible β-H elimination.
Project description:A new method for the stereoselective synthesis of tetrasubstituted olefins is described. β-Ketophosphonates are alkylated via conventional methods, and a Grignard reagent is used to diastereoselectively add to the carbonyl group of the resulting intermediates. The elimination of hydroxyl phosphonates yielded the desired tetrasubstituted olefins in a stereoselective manner. Thus, homofarnesenes of fire ant trail pheromones have been synthesized efficiently using this strategy.
Project description:Achieving selective hydrodeoxygenation of α, β-unsaturated carbonyl groups to alkenes poses a substantial challenge due to the presence of multiple functional groups. In this study, we develop a ZnNC-X catalyst (X represents the calcination temperature) that incorporates both Lewis acidic-basic sites and Zn-Nx sites to address this challenge. Among the catalyst variants, ZnNC-900 catalyst exhibits impressive selectivity for alkenes in the hydrodeoxygenation of α, β-unsaturated carbonyl compounds, achieving up to 94.8% selectivity. Through comprehensive mechanism investigations and catalyst characterization, we identify the Lewis acidic-basic sites as responsible for the selective hydrogenation of C=O bonds, while the Zn-Nx sites facilitate the subsequent selective hydrodeoxygenation step. Furthermore, ZnNC-900 catalyst displays broad applicability across a diverse range of unsaturated carbonyl compounds. These findings not only offer valuable insights into the design of effective catalysts for controlling alkene selectivity but also extend the scope of sustainable transformations in synthetic chemistry.
Project description:A highly stereocontrolled synthesis of tetrasubstituted acyclic all-carbon olefins has been developed via a stereoselective enolization and tosylate formation, followed by a palladium-catalyzed Suzuki-Miyaura cross-coupling of the tosylates and pinacol boronic esters in the presence of a Pd(OAc)2/RuPhos catalytic system. Both the enol tosylation and Suzuki-Miyaura coupling reactions tolerate an array of electronically and sterically diverse substituents and generate high yield and stereoselectivity of the olefin products. Judicious choice of substrate and coupling partner provides access to either the E- or Z-olefin with excellent yield and stereochemical fidelity. Olefin isomerization was observed during the Suzuki-Miyaura coupling. However, under the optimized cross-coupling reaction conditions, the isomerization was suppressed to <5% in most cases. Mechanistic probes indicate that the olefin isomerization occurs via an intermediate, possibly a zwitterionic palladium carbenoid species.
Project description:We have designed a new sequential carbocupration and sulfur-lithium exchange that leads stereo- and regioselectively to trisubstituted alkenyllithiums. Subsequent trapping with various electrophiles yields tetrasubstituted olefins with good control of the double-bond geometry (E/Z ratio up to 99:1). The novel sulfur-lithium exchange could be extended to the stereoselective preparation of Z-styryl lithium derivatives with almost complete retention of the double-bond geometry.
Project description:A copper-catalyzed conjugate addition of alkylboron compounds (alkyl-9-BBN, prepared by hydroboration of alkenes with 9-BBN-H) to alkynoates to form β-disubstituted acrylates is reported. The addition occurred in a formal syn-hydroalkylation mode. The syn stereoselectivity was excellent regardless of the substrate structure. A variety of functional groups were compatible with the conjugate addition.
Project description:Stereocontrolled construction of tetrasubstituted olefins has been an attractive issue yet remains challenging for synthetic chemists. In this manuscript, alkynyl selenides, when treated with ArBCl2, are subject to an exclusive 1,1-carboboration, affording tetrasubstituted alkenes with excellent levels of E-selectivity. Detailed mechanistic studies, supported by DFT calculations, elucidates the role of selenium in this 1,1-addition process. Coupled with subsequent C-B and C-Se bond transformations, this 1,1-addition protocol constitutes a modular access to stereodefined all-carbon tetrasubstituted alkenes. The merit of this approach is demonstrated by programmed assembly of diverse functionalized multi-arylated alkenes, especially enabling the stereospecific synthesis of all six possible stereoisomers of tetraarylethene (TAE) derived from the random permutation of four distinct aryl substituents around the double bond. The diversity-oriented synthesis is further utilized to explore different TAE luminogenic properties and potential Se-containing antitumor lead compounds.
Project description:Two-component Giese type radical additions are highly practical and established reactions. Herein, three-component radical conjugate additions of unactivated alkenes to Michael acceptors are reported. Amidyl radicals, oxidatively generated from α-amido oxy acids using redox catalysis, act as the third reaction component which add to the unactivated alkenes. The adduct radicals engage in Giese type additions to Michael acceptors to provide, after reduction, the three-component products in an overall alkene carboamination reaction. Transformations which can be conducted under practical mild conditions feature high functional group tolerance and broad substrate scope.
Project description:In this communication, we describe an unprecedented highly enantioselective catalytic conjugate addition of simple alkyl thiols to alpha,beta-unsaturated N-acylated oxazolidin-2-ones catalyzed by acid-base bifunctional catalysis. This reaction provides a useful catalytic method for the synthesis of optically active chiral sulfur compounds that are otherwise difficult to prepare by asymmetric catalysis. The successful development of this reaction resulted from a discovery that, upon proper modification, a cinchona alkaloid bearing a thiourea functionality at 6' position can afford highly efficient catalysis for asymmetric conjugate additions.