Ontology highlight
ABSTRACT:
SUBMITTER: Murray CJ
PROVIDER: S-EPMC3891983 | biostudies-literature | 2014 Jan
REPOSITORIES: biostudies-literature
Murray Christopher J L CJ Lozano Rafael R Flaxman Abraham D AD Serina Peter P Phillips David D Stewart Andrea A James Spencer L SL Vahdatpour Alireza A Atkinson Charles C Freeman Michael K MK Ohno Summer Lockett SL Black Robert R Ali Said Mohammed SM Baqui Abdullah H AH Dandona Lalit L Dantzer Emily E Darmstadt Gary L GL Das Vinita V Dhingra Usha U Dutta Arup A Fawzi Wafaie W Gómez Sara S Hernández Bernardo B Joshi Rohina R Kalter Henry D HD Kumar Aarti A Kumar Vishwajeet V Lucero Marilla M Mehta Saurabh S Neal Bruce B Praveen Devarsetty D Premji Zul Z Ramírez-Villalobos Dolores D Remolador Hazel H Riley Ian I Romero Minerva M Said Mwanaidi M Sanvictores Diozele D Sazawal Sunil S Tallo Veronica V Lopez Alan D AD
BMC medicine 20140109
<h4>Background</h4>Monitoring progress with disease and injury reduction in many populations will require widespread use of verbal autopsy (VA). Multiple methods have been developed for assigning cause of death from a VA but their application is restricted by uncertainty about their reliability.<h4>Methods</h4>We investigated the validity of five automated VA methods for assigning cause of death: InterVA-4, Random Forest (RF), Simplified Symptom Pattern (SSP), Tariff method (Tariff), and King-Lu ...[more]