Project description:A concise and modular total synthesis of the highly potent N14-desacetoxytubulysin H (1) has been accomplished in 18 steps in an overall yield of up to 30%. Our work highlights the complexity-augmenting and route-shortening power of diastereoselective multicomponent reaction (MCR) as well as the role of bulky ligands to perfectly control both the regioselective and diastereoselective synthesis of tubuphenylalanine in just two steps. The total synthesis not only provides an operationally simple and step economy but will also stimulate major advances in the development of new tubulysin analogues.
Project description:Carbohydrate molecules with an α-glycosylated carboxylic acid motif provide access to biologically relevant chemical space but are difficult to synthesize with high selectivity. To address this challenge, we report a mild and operationally simple protocol to synthesize a wide range of functionally and structurally diverse α-glycosylated carboxylic acids in good yields with high diastereoselectivity. Although there is no apparent correlation between reaction conversion and pK a of carboxylic acids, we found that carboxylic acids with a pK a of 4-5 provide high selectivity while those of a pK a of 2.5 or lower do not. Our strategy utilizes readily available 2,9-dibutyl-1,10-phenanthroline as an effective nucleophilic catalyst to displace a bromide leaving group from an activated sugar electrophile in a nucleophilic substitution reaction, forming phenanthrolinium intermediates. The attack of the carboxylic acid takes place from the α-face of the more reactive intermediate, resulting in the formation of α-glycosylated carboxylic acid. Previous calculations suggested that the hydroxyl group participates in the hydrogen bond interaction with the basic C2-oxygen of a sugar moiety and serves as a nucleophile to attack the C1-anomeric center. In contrast, our computational studies reveal that the carbonyl oxygen of the carboxylic acid serves as a nucleophile, with the carboxylic acid-OH forming a hydrogen bond with the basic C2-oxygen of the sugar moiety. This strong hydrogen bond (1.65 Å) interaction increases the nucleophilicity of the carbonyl oxygen of carboxylic acid and plays a critical role in the selectivity-determining step. In contrast, when alcohol acts as a nucleophile, this scenario is not possible since the -OH group of the alcohol interacts with the C2-oxygen and attacks the C1-anomeric carbon of the sugar moiety. This is also reflected in alcohol-OH's weak hydrogen bond (1.95 Å) interaction with the C2-oxygen. The O(C2)-HO (carboxylic acid) angle was measured to be 171° while the O(C2)-HO (alcohol) angle at 122° deviates from linearity, resulting in weak hydrogen bonding.
Project description:Herein, we describe a one-pot protocol for the synthesis of a novel series of polycyclic triazole derivatives. Transition metal-catalyzed decarboxylative CuAAC and dehydrogenative cross coupling reactions are combined in a single flask and achieved good yields of the respective triazoles (up to 97% yield). This methodology is more convenient to produce the complex polycyclic molecules in a simple way.
Project description:Ynamides react with conjugated enynes in intramolecular [4 + 2] cycloadditions to afford substituted indolines that undergo oxidation with o-chloranil to furnish the corresponding indoles. The cycloaddition substrates are easily assembled from derivatives of 3-butynylamine by Sonogashira coupling with alkenyl halides followed by copper-catalyzed N-alkynylation with acetylenic bromides. Diynamides participate as particularly reactive 2pi components in the cycloaddition, providing access to indolines with carbon substituents at the C-7 position. Enynamides serve as 4pi components in a complementary version of the cycloaddition strategy which provides access to indoles and indolines substituted with carbon substituents at C-4. These enyne cycloadditions take place upon heating the substrates at 110-210 degrees C in toluene or 2,2,2-trifluoroethanol and in some cases can be achieved at 0 degrees C to room temperature in the presence of Lewis acids such as Me2AlCl.
Project description:Nickel/photoredox catalysis is used to synthesize indolines in one step from iodoacetanilides and alkenes. Very high regioselectivity for 3-substituted indoline products is obtained for both aliphatic and styrenyl olefins. Mechanistic investigations indicate that oxidation to Ni(III) is necessary to perform the difficult C-N bond-forming reductive elimination, producing a Ni(I) complex, which in turn is reduced to Ni(0). This process serves to further demonstrate the utility of photoredox catalysts as controlled single electron transfer agents in multioxidation state nickel catalysis.
Project description:The cycloaddition of nitrile oxides and nitrilimines to one or both of the C=C double bonds of caryophyllene is described. The possibility of introducing five-membered fused and spiro-linked heterocycles into the structure of sesquiterpenes by the 1,3-dipolar cycloaddition reactions of nitrile oxides and nitrilimines to caryophyllene was demonstrated. As a result of these reactions, pharmacophore fragments of isoxazoline and pyrazoline are introduced into the structure of caryophyllene, which leads to an increase in the conformational rigidity of the molecule. A complete stereochemical assignment of 1,3-dipolar cycloaddition adducts to caryophyllene was carried out. The study of antiviral and cytotoxic activity for some heterocyclic derivatives synthesized in this work revealed relatively high biological activity of previously little-studied cycloaddition adducts at the exocyclic C=CH2 bond of caryophyllene. The effect of substituents in the synthesized heterocycles on biological activity was demonstrated. Compounds with a good inhibitory effect on the H1N1 influenza virus were revealed. The activity of the compound was demonstrated up to 6 h post infection, and this could be due to slight inhibiting activity against viral neuraminidase, necessary at the stage of progeny virion budding.
Project description:We present herein an unconventional tandem [3,3]-sigmatropic rearrangement/[2 + 2] cycloaddition of simple dipropargylphosphonates to deliver a range of bicyclic polysubstituted cyclobutenes and cyclobutanes under Ag/Co relay catalysis. An interesting switch from allene-allene to allene-alkyne cycloaddition was observed based on the substitution of the substrates, which further diversified the range of compounds accessible from this practical method. Significantly, preliminary biological screening of these new compounds identified promising candidates as suppressors of cellular proliferation.
Project description:A palladium-catalyzed one-step annulative π-extension (APEX) reaction of indoles and pyrroles that allows rapid access to nitrogen-containing polycyclic aromatic compounds is described. In the presence of palladium pivalate and silver carbonate, diverse indoles or pyrroles coupled with diiodobiaryls in a double direct C-H arylation manner to be transformed into the corresponding π-extended compounds in a single step. The newly developed catalytic system enables the use of various pyrroles and indoles as templates with a series of diiodobiaryls to provide structurally complicated and largely π-extended nitrogen-containing polycyclic aromatic compounds that are otherwise difficult to synthesize.
Project description:Cascade (domino) reactions facilitate the formation of complex molecules from simple starting materials in a single operation. It was found that 1-naphthaldehyde derivatives can be converted to enantioenriched (82-96% ee) polycyclic benzoisochromenes via a cascade of ortho photocycloaddition and ensuing acid-catalysed rearrangement reactions. The cascade was initiated by irradiation with visible light (λ = 457 nm) and catalysed by a chiral AlBr3-activated 1,3,2-oxazaborolidine (14 examples, 65-93% yield). The absolute configuration of the products was elucidated by single crystal X-ray crystallography. Mechanistic experiments suggest that the ortho photocycloaddition occurs on the triplet hypersurface and that the chiral catalyst induces in this step the observed enantioselectivity.
Project description:A key thioether substituent in readily accessible 2-alkyl-5-(methylthio)tetrazoles enables facile photoinduced denitrogenation and intramolecular nitrile imine 1,3-dipolar cycloaddition to afford a wide range of polycyclic pyrazoline products with excellent diastereoselectivity. The methylthio group red-shifts the UV absorbance of the tetrazole, obviating the requirement in all previous substrate systems for at least one aryl substituent, and can subsequently be converted into a variety of other functionalities. This synthetic platform has been applied to the concise total syntheses of the alkaloid natural products (±)-newbouldine and withasomnine.