Unknown

Dataset Information

0

Cathepsin K knockout alleviates pressure overload-induced cardiac hypertrophy.


ABSTRACT: Evidence from human and animal studies has documented elevated levels of lysosomal cysteine protease cathepsin K in failing hearts. Here, we hypothesized that ablation of cathepsin K mitigates pressure overload-induced cardiac hypertrophy. Cathepsin K knockout mice and their wild-type littermates were subjected to abdominal aortic constriction, resulting in cardiac remodeling (heart weight, cardiomyocyte size, left ventricular wall thickness, and end diastolic and end systolic dimensions) and decreased fractional shortening, the effects of which were significantly attenuated or ablated by cathepsin K knockout. Pressure overload dampened cardiomyocyte contractile function along with decreased resting Ca2+ levels and delayed Ca2+ clearance, which were partly resolved by cathepsin K knockout. Cardiac mammalian target of rapamycin and extracellular signal-regulated kinases (ERK) signaling cascades were upregulated by pressure overload, the effects of which were attenuated by cathepsin K knockout. In cultured H9c2 myoblast cells, silencing of cathepsin K blunted, whereas cathepsin K transfection mimicked phenylephrine-induced hypertrophic response, along with elevated phosphorylation of mammalian target of rapamycin and ERK. In addition, cathepsin K protein levels were markedly elevated in human hearts of end-stage dilated cardiomyopathy. Collectively, our data suggest that cathepsin K ablation mitigates pressure overload-induced hypertrophy, possibly via inhibition of the mammalian target of rapamycin and ERK pathways.

SUBMITTER: Hua Y 

PROVIDER: S-EPMC3929275 | biostudies-literature | 2013 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cathepsin K knockout alleviates pressure overload-induced cardiac hypertrophy.

Hua Yinan Y   Xu Xihui X   Shi Guo-Ping GP   Chicco Adam J AJ   Ren Jun J   Nair Sreejayan S  

Hypertension (Dallas, Tex. : 1979) 20130325 6


Evidence from human and animal studies has documented elevated levels of lysosomal cysteine protease cathepsin K in failing hearts. Here, we hypothesized that ablation of cathepsin K mitigates pressure overload-induced cardiac hypertrophy. Cathepsin K knockout mice and their wild-type littermates were subjected to abdominal aortic constriction, resulting in cardiac remodeling (heart weight, cardiomyocyte size, left ventricular wall thickness, and end diastolic and end systolic dimensions) and de  ...[more]

Similar Datasets

2002-07-30 | GSE76 | GEO
| S-EPMC4406663 | biostudies-literature
2005-06-29 | GSE2459 | GEO
2006-07-04 | GSE5129 | GEO
2018-10-09 | GSE120740 | GEO