Project description:Pyruvate kinase (PYK) is a critical allosterically regulated enzyme that links glycolysis, the primary energy metabolism, to cellular metabolism. Lactic acid bacteria rely almost exclusively on glycolysis for their energy production under anaerobic conditions, which reinforces the key role of PYK in their metabolism. These organisms are closely related, but have adapted to a huge variety of native environments. They include food-fermenting organisms, important symbionts in the human gut, and antibiotic-resistant pathogens. In contrast to the rather conserved inhibition of PYK by inorganic phosphate, the activation of PYK shows high variability in the type of activating compound between different lactic acid bacteria. System-wide comparative studies of the metabolism of lactic acid bacteria are required to understand the reasons for the diversity of these closely related microorganisms. These require knowledge of the identities of the enzyme modifiers. Here, we predict potential allosteric activators of PYKs from three lactic acid bacteria which are adapted to different native environments. We used protein structure-based molecular modeling and enzyme kinetic modeling to predict and validate potential activators of PYK. Specifically, we compared the electrostatic potential and the binding of phosphate moieties at the allosteric binding sites, and predicted potential allosteric activators by docking. We then made a kinetic model of Lactococcus lactis PYK to relate the activator predictions to the intracellular sugar-phosphate conditions in lactic acid bacteria. This strategy enabled us to predict fructose 1,6-bisphosphate as the sole activator of the Enterococcus faecalis PYK, and to predict that the PYKs from Streptococcus pyogenes and Lactobacillus plantarum show weaker specificity for their allosteric activators, while still having fructose 1,6-bisphosphate play the main activator role in vivo. These differences in the specificity of allosteric activation may reflect adaptation to different environments with different concentrations of activating compounds. The combined computational approach employed can readily be applied to other enzymes.
Project description:Pyruvate kinase muscle isoform 2 (PKM2) is a key glycolytic enzyme and transcriptional coactivator and is critical for tumor metabolism. In cancer cells, native tetrameric PKM2 is phosphorylated or acetylated, which initiates a switch to a dimeric/monomeric form that translocates into the nucleus, causing oncogene transcription. However, it is not known how these post-translational modifications (PTMs) disrupt the oligomeric state of PKM2. We explored this question via crystallographic and biophysical analyses of PKM2 mutants containing residues that mimic phosphorylation and acetylation. We find that the PTMs elicit major structural reorganization of the fructose 1,6-bisphosphate (FBP), an allosteric activator, binding site, impacting the interaction with FBP and causing a disruption in oligomerization. To gain insight into how these modifications might cause unique outcomes in cancer cells, we examined the impact of increasing the intracellular pH (pHi) from ∼7.1 (in normal cells) to ∼7.5 (in cancer cells). Biochemical studies of WT PKM2 (wtPKM2) and the two mimetic variants demonstrated that the activity decreases as the pH is increased from 7.0 to 8.0, and wtPKM2 is optimally active and amenable to FBP-mediated allosteric regulation at pHi 7.5. However, the PTM mimetics exist as a mixture of tetramer and dimer, indicating that physiologically dimeric fraction is important and might be necessary for the modified PKM2 to translocate into the nucleus. Thus, our findings provide insight into how PTMs and pH regulate PKM2 and offer a broader understanding of its intricate allosteric regulation mechanism by phosphorylation or acetylation.
Project description:Mitochondrial pyruvate dehydrogenase kinase 2 (PDHK2) phosphorylates the pyruvate dehydrogenase multienzyme complex (PDC) and thereby controls the rate of oxidative decarboxylation of pyruvate. The activity of PDHK2 is regulated by a variety of metabolites such as pyruvate, NAD (+), NADH, CoA, and acetyl-CoA. The inhibitory effect of pyruvate occurs through the unique binding site, which is specific for pyruvate and its synthetic analogue dichloroacetate (DCA). The effects of NAD (+), NADH, CoA, and acetyl-CoA are mediated by the binding site that recognizes the inner lipoyl-bearing domain (L2) of the dihydrolipoyl transacetylase (E2). Both allosteric sites are separated from the active site of PDHK2 by more than 20 A. Here we show that mutations of three amino acid residues located in the vicinity of the active site of PDHK2 (R250, T302, and Y320) make the kinase resistant to the inhibitory effect of DCA, thereby uncoupling the active site from the allosteric site. In addition, we provide evidence that substitutions of R250 and T302 can partially or completely uncouple the L2-binding site. Based on the available structural data, R250, T302, and Y320 stabilize the "open" and "closed" conformations of the built-in lid that controls the access of a nucleotide into the nucleotide-binding cavity. This strongly suggests that the mobility of ATP lid is central to the allosteric regulation of PDHK2 activity serving as a conformational switch required for communication between the active site and allosteric sites in the kinase molecule.
Project description:The energetic landscape of the allosteric regulatory mechanism of rabbit muscle pyruvate kinase (RMPK) was characterized by isothermal titration calorimetry (ITC). Four novel insights were uncovered. (1) ADP exhibits a dual property. Depending on the temperature, ADP can regulate RMPK activity by switching the enzyme to either the R or T state. (2) The assumption that ligand binding to RMPK is state-dependent is only correct for PEP but not Phe and ADP. (3) The effect of pH on the regulatory behavior of RMPK is partly due to the complex pattern of proton release or absorption linked to the multiple linked equilibria which govern the activity of the enzyme. (4) The R <--> T equilibrium is accompanied by a significant DeltaC(p), rendering RMPK most sensitive to temperature under physiological conditions. To rigorously test the validity of conclusions derived from the ITC data, in this study a fluorescence approach, albeit indirect, that tracks continuous structural perturbations was employed. Intrinsic Trp fluorescence of RMPK in the absence and presence of substrates phosphoenolpyruvate (PEP) and ADP, and the allosteric inhibitor Phe, was measured in the temperature range between 4 and 45 degrees C. For data analysis, the fluorescence data were complemented by ITC experiments to yield an extended data set allowing more complete characterization of the RMPK regulatory mechanism. Twenty-one thermodynamic parameters were derived to define the network of linked interactions involved in regulating the allosteric behavior of RMPK through global analysis of the ITC and fluorescent data sets. In this study, 27 independent curves with more than 1600 experimental points were globally analyzed. Consequently, the consensus results substantiate not only the conclusions derived from the ITC data but also structural information characterizing the transition between the active and inactive states of RMPK and the antagonism between ADP and Phe binding. The latter observation reveals a novel role for ADP in the allosteric regulation of RMPK.
Project description:Cyclic di-3',5'-adenosine monophosphate (c-di-AMP) is a broadly conserved bacterial second messenger that has been implicated in a wide range of cellular processes. Our earlier studies showed that c-di-AMP regulates central metabolism in Listeria monocytogenes by inhibiting its pyruvate carboxylase (LmPC), a biotin-dependent enzyme with biotin carboxylase (BC) and carboxyltransferase (CT) activities. We report here structural, biochemical, and functional studies on the inhibition of Lactococcus lactis PC (LlPC) by c-di-AMP. The compound is bound at the dimer interface of the CT domain, at a site equivalent to that in LmPC, although it has a distinct binding mode in the LlPC complex. This binding site is not well conserved among PCs, and only a subset of these bacterial enzymes are sensitive to c-di-AMP. Conformational changes in the CT dimer induced by c-di-AMP binding may be the molecular mechanism for its inhibitory activity. Mutations of residues in the binding site can abolish c-di-AMP inhibition. In L. lactis, LlPC is required for efficient milk acidification through its essential role in aspartate biosynthesis. The aspartate pool in L. lactis is negatively regulated by c-di-AMP, and high aspartate levels can be restored by expression of a c-di-AMP-insensitive LlPC. LlPC has high intrinsic catalytic activity and is not sensitive to acetyl-CoA activation, in contrast to other PC enzymes.
Project description:Gluconeogenesis, the reciprocal pathway of glycolysis, is an energy-consuming process that generates glycolytic intermediates from non-carbohydrate sources. In this study, we demonstrate that robust and efficient gluconeogenesis in bacteria relies on the allosteric inactivation of pyruvate kinase, the enzyme responsible for the irreversible final step of glycolysis. Using the model bacterium Bacillus subtilis as an example, we discovered that pyruvate kinase activity is inhibited during gluconeogenesis via its extra C-terminal domain (ECTD), which is essential for autoinhibition and metabolic regulation. Physiologically, a B. subtilis mutant lacking the ECTD in pyruvate kinase displayed multiple defects under gluconeogenic conditions, including inefficient carbon utilization, slower growth, and decreased resistance to the herbicide glyphosate. These defects were not caused by the phosphoenolpyruvate-pyruvate-oxaloacetate futile cycle. Instead, we identified two major metabolic consequences of pyruvate kinase dysregulation during gluconeogenesis: failure to establish high phosphoenolpyruvate (PEP) concentrations necessary for robust gluconeogenesis and increased carbon overflow into the medium. In silico analysis revealed that, in wild-type cells, an expanded PEP pool enabled by pyruvate kinase inactivation is critical for maintaining the thermodynamic feasibility of gluconeogenesis. Additionally, we discovered that B. subtilis exhibits glyphosate resistance specifically under gluconeogenic conditions, and this resistance depends on the PEP pool expansion resulting from pyruvate kinase inactivation. Our findings underscore the importance of allosteric regulation during gluconeogenesis in coordinating metabolic flux, efficient carbon utilization, and antimicrobial resistance.IMPORTANCEPyruvate kinase catalyzes the final irreversible step in glycolysis and is commonly thought to play a critical role in regulating this pathway. In this study, we identified a constitutively active variant of pyruvate kinase, which did not impact glycolysis but instead led to multiple metabolic defects during gluconeogenesis. Contrary to conventional understanding, these defects were not due to the phosphoenolpyruvate-pyruvate-oxaloacetate futile cycle. Our findings suggest that the defects arose from an insufficient buildup of the phosphoenolpyruvate pool and an increase in carbon overflow metabolism. Overall, this study demonstrates the essential role of pyruvate kinase allosteric regulation during gluconeogenesis in maintaining adequate phosphoenolpyruvate levels, which helps prevent overflow metabolism and enhances the thermodynamic favorability of the pathway. This study also provides a novel link between glyphosate resistance and gluconeogenesis.
Project description:There is growing recognition that the functional outcome of binding of an allosteric regulator to a protein/enzyme is influenced by the presence of other ligands. Here, this complexity is exemplified in the allosteric regulation of human liver pyruvate kinase (hLPYK) that is influenced by the presence of a range of divalent cation types and concentrations. For this system, fructose-1,6-bisphosphate (activator) and alanine (inhibitor) both influence the protein's affinity for the substrate, phosphoenolpyruvate (PEP). Mg2+, Mn2+, Ni2+, and Co2+ were the primary divalent cations evaluated, although Zn2+, Cd2+, V2+, Pb2+, Fe2+, and Cu2+also supported activity. Allosteric coupling between Fru-1,6-BP and PEP and between Ala and PEP varied depending on divalent cation type and concentration. Due to complicating interactions among small molecules, we did not attempt the fitting of response trends and instead we discuss a range of potential mechanisms that may explain those observed trends. Specifically, observed "substrate inhibition" may result from substrate A in one active site acting as an allosteric regulator for the affinity for substrate B in a second active site of a multimer. We also discuss apparent changes in allosteric coupling that can result from a sub-saturating concentration of a third allosteric ligand.
Project description:Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate. The reaction occurs in two separate catalytic domains, coupled by the long-range translocation of a biotinylated carrier domain (BCCP). Here, we use a series of hybrid PC enzymes to examine multiple BCCP translocation pathways in PC. These studies reveal that the BCCP domain of PC adopts a wide range of translocation pathways during catalysis. Furthermore, the allosteric activator, acetyl CoA, promotes one specific intermolecular carrier domain translocation pathway. These results provide a basis for the ordered thermodynamic state and the enhanced carboxyl group transfer efficiency in the presence of acetyl CoA, and reveal that the allosteric effector regulates enzyme activity by altering carrier domain movement. Given the similarities with enzymes involved in the modular synthesis of natural products, the allosteric regulation of carrier domain movements in PC is likely to be broadly applicable to multiple important enzyme systems.
Project description:Use of kefir-derived soy-adapted lactic acid bacteria for the preparation of a fermented soy drink with increased estrogenic activity
Project description:Use of kefir-derived soy-adapted lactic acid bacteria for the preparation of a fermented soy drink with increased estrogenic activity