Project description:AimTo map Usher phenotype in a consanguineous Pakistani family and identify disease-associated mutation in a causative gene to establish phenotype-genotype correlation.MethodsA consanguineous Pakistani family in which Usher phenotype was segregating as an autosomal recessive trait was ascertained. On the basis of results of clinical investigations of affected members of this family disease was diagnosed as Usher syndrome (USH). To identify the locus responsible for the Usher phenotype in this family, genomic DNA from blood sample of each individual was genotyped using microsatellite Short Tandem Repeat (STR) markers for the known Usher syndrome loci. Then direct sequencing was performed to find out disease associated mutations in the candidate gene.ResultsBy genetic linkage analysis, the USH phenotype of this family was mapped to PCDH15 locus on chromosome 10q21.1. Three different point mutations in exon 11 of PCDH15 were identified and one of them, c.1304A>C was found to be segregating with the disease phenotype in Pakistani family with Usher phenotype. This, c.1304A>C transversion mutation predicts an amino-acid substitution of aspartic acid with an alanine at residue number 435 (p.D435A) of its protein product. Moreover, in silico analysis revealed conservation of aspartic acid at position 435 and predicated this change as pathogenic.ConclusionThe identification of c.1304A>C pathogenic mutation in PCDH15 gene and its association with Usher syndrome in a consanguineous Pakistani family is the first example of a missense mutation of PCDH15 causing USH1 phenotype. In previous reports, it was hypothesized that severe mutations such as truncated protein of PCDH15 led to the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.
Project description:Spermine synthase (SMS) is a key enzyme controlling the concentration of spermidine and spermine in the cell. The importance of SMS is manifested by the fact that single missense mutations were found to cause Snyder-Robinson Syndrome (SRS). At the same time, currently there are no non-synonymous single nucleoside polymorphisms, nsSNPs (harmless mutations), found in SMS, which may imply that the SMS does not tolerate amino acid substitutions, i.e. is not mutable.To investigate the mutability of the SMS, we carried out in silico analysis and in vitro experiments of the effects of amino acid substitutions at the missense mutation sites (G56, V132 and I150) that have been shown to cause SRS. Our investigation showed that the mutation sites have different degree of mutability depending on their structural micro-environment and involvement in the function and structural integrity of the SMS. It was found that the I150 site does not tolerate any mutation, while V132, despite its key position at the interface of SMS dimer, is quite mutable. The G56 site is in the middle of the spectra, but still quite sensitive to charge residue replacement.The performed analysis showed that mutability depends on the detail of the structural and functional factors and cannot be predicted based on conservation of wild type properties alone. Also, harmless nsSNPs can be expected to occur even at sites at which missense mutations were found to cause diseases.
Project description:Context:Patients with von Hippel-Lindau (vHL) disease caused by a missense VHL mutation have a more severe phenotype compared with other VHL mutation types. Objective:To define pancreatic neuroendocrine tumor (PNET) aggressiveness according to VHL genotype. Design:A prospective natural history study. Setting:The National Institutes of Health clinical center. Patients:Patients with vHL disease, pancreatic manifestations, and germline missense VHL gene mutations. Intervention:In-silico prediction of VHL mutation via five computational prediction models. Patients with >80% prediction for disease-causing mutations in all models [high predicted risk (HPR)] were compared with others [low predicted risk (LPR)]. Main Outcome Measure:Rates of metastases, surgical intervention, and disease progression. Results:Sixty-nine patients were included: 2 developed metastases, 12 needed surgery, and 31 had disease progression during a median follow-up of 60 months (range 13 to 84 months). Thirteen patients were excluded for low prediction reliability. In the remaining 56 patients (45 with PNETs, 11 with pancreatic cysts), the HPR group (n = 13) had a higher rate of disease progression than the LPR group (n = 43) in multivariable analysis (hazard ratio 3.6; 95% confidence interval, 1.1 to 11.9; P = 0.037). The HPR group also had a higher risk of developing metastases (P = 0.015). Among patients with codon 167 hotspot mutations (n = 26), those in the HPR group had a higher risk for disease progression (P = 0.03) than other patients. Conclusions:Computational models for predicting the impact of missense VHL gene mutations may be used as a prognostic factor in patients with PNETs in the context of vHL disease.
Project description:BackgroundThe m.14487T>C mutation is recognized as a diagnostic mutation of mitochondrial disease during the past 16 years, emerging evidence suggests that mutant loads of m.14487T>C and disease phenotype are not closely correlated.MethodsImmortalized lymphocytes were generated by coculturing the Epstein-Barr virus and lymphocytes from m.14487T>C carrier Chinese patient with Leigh syndrome. Fifteen cytoplasmic hybrid (cybrid) cell lines were generated by fusing mtDNA lacking 143B cells with platelets donated by patients. Mitochondrial function was systematically analyzed at transcriptomic, metabolomic, and biochemical levels.ResultsUnlike previous reports, we found that the assembly of mitochondrial respiratory chain complexes, mitochondrial respiration, and mitochondrial OXPHOS function was barely affected in cybrid cells carrying homoplastic m.14487T>C mutation. Mitochondrial dysfunction associated transcriptomic and metabolomic reprogramming were not detected in cybrid carrying homoplastic m.14487T>C. However, we found that mitochondrial function was impaired in patient-derived immortalized lymphocytes.ConclusionOur data revealed that m.14487T>C mutation is insufficient to cause mitochondrial deficiency; additional modifier genes may be involved in m.14487T>C-associated mitochondrial disease. Our results further demonstrated that a caution should be taken by solely use of m.14487T>C mutation for molecular diagnosis of mitochondrial disease.
Project description:BackgroundPrimary congenital glaucoma (PCG) is a heterogeneous rare recessively inherited disorder prevalent in regions with high consanguinity. Disease phenotype is associated with increased intra ocular pressure and is a major cause of childhood blindness. Sequence variations in Cytochrome P450 1B1 (CYP1B1) gene are a major cause of PCG. Current study was conducted to screen CYP1B1 gene in highly consanguineous PCG affected families from Pakistani population consistent with the autosomal recessive pattern of PCG inheritance.MethodsFor this study, patients and controls (clinically unaffected individuals of each family) from 25 consanguineous families belonging to Punjab, Baluchistan and Khyber Pakhtunkhwa, Pakistan were recruited through ophthalmologists. DNA was isolated from collected blood samples. Genetic screening of CYP1B1 gene was done for all enrolled families. In-silico analysis was performed to identify and predict the potential disease-causing variations.ResultsPathogenicity screening revealed sequence variants segregating with disease phenotype in homozygous or compound heterozygous form in eleven out of 25 analyzed families. We identified a total of sixteen disease causing variants among which five frameshift i.e., c.629dup (p.Gly211Argfs*13), c.287dup (p.Leu97Alafs*127), c.662dup (p.Arg222Profs*2), c.758_759insA (p.Val254Glyfs*73) and c.789dup (p.Leu264Alafs*63), two silent c.1314G>A, c.771T>G and six missense variations c.457C>G (p.Arg153Gly), c.516C>A (p.Ser172Arg), c.722T>A (p.Val241Glu), c.740T>A (p.Leu247Gln), c.1263T>A (p.Phe421Leu), and c.724G>C (p.Asp242His) are previously un reported. However two frameshift c.868dup (p.Arg290Profs*37), c.247del (p.Asp83Thrfs*12) and one missense variant c.732G>A (p.Met244Ile), is previously reported. Furthermore, six polymorphisms c.1347T>C, c.2244_2245insT, c.355G>T, c.1294G>C, c.1358A>G and c.142C>G were also identified. In the intronic region, a novel silent polymorphism i.e., g.35710_35711insT was found in homozygous state. All the newly detected disease-causing variants were negative in 96 ethnically matched controls.ConclusionAmong twenty-five screened families, eight families (PCG50, 52-54, 58, 59, 63 and 67) were segregating disease causing variants in recessive manner. Two families (PCG049 and PCG062) had compound heterozygosity. Our data confirms genetic heterogeneity of PCG in Pakistani population however we did not find molecular variants segregating with PCG in fifteen families in coding exons and intron-exon boundaries of CYP1B1 gene. Genetic counseling was provided to families to refrain from practicing consanguinity and perform premarital screening as a PCG control measure in upcoming generations.
Project description:We established two clones of induced pluripotent stem cells (iPSC) with the presenilin 2 mutation, N141 (PS2-1 iPSC and PS2-2 iPSC) by retroviral transduction of primary human fibroblasts. To detect the copy number dependent gene expression profiles in primary fibroblast carrying the presenilin 2 mutation N141(before reprogramming) and PS2-1 iPSC and PS2-2 iPSC(after reprogramming), this experiment was designed. Genomic DNA of primary fibroblasts carrying the presenilin 2 mutation N141 and undifferentiated PS2-1 iPSC and PS2-2 iPSC were collected. Then, they were applied in this experiment.
Project description:A 4-month-old male infant was diagnosed with nephrogenic diabetes insipidus (NDI). Genetic testing of the arginine vasopressin receptor-2 (AVPR2) yielded a novel X-linked mutation, termed Q96H, in both the propositus and his mother; there was no family history. Protein sequence comparison between AVPR subtypes shows that Q96 is part of a highly conserved motif. Many other disease-causing mutations, confirmed with in vitro expression studies, map to surrounding residues. Molecular modelling studies showed that the equivalent residue in AVPR1 is likely critical for vasopressin binding. We posit that Q96 must be important for the integrity of AVPR2 function.
Project description:Alzheimer’s disease (AD) is a major problem of health and disability, with a relevant economic impact on society (e.g., €177 billion in Europe). Despite important advances in pathogenesis, diagnosis, and treatment, The primary causes of AD remain elusive, accurate biomarkers are not well characterized, and available pharmacological treatments are not cost-effective. As a complex disorder, AD is polygenic and multifactorial: hundreds of defective genes distributed across the human genome may contribute to its pathogenesis (with the participation of diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena) and lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death. Future perspectives for the global management of AD predict that structural and functional genomics and proteomics may help in the search for reliable biomarkers, and that pharmacogenomics may be an option in optimizing drug development and therapeutics.
Project description:Missense mutations in transcription factor GATA1 underlie a spectrum of congenital red blood cell and platelet disorders. We investigated how these alterations cause distinct clinical phenotypes by combining structural, biochemical, and genomic approaches with gene complementation systems that examine GATA1 function in biologically relevant cellular contexts. Substitutions that disrupt FOG1 cofactor binding impair both gene activation and repression and are associated with pronounced clinical phenotypes. Moreover, clinical severity correlates with the degree of FOG1 disruption. Surprisingly, 2 mutations shown to impair DNA binding of GATA1 in vitro did not measurably affect in vivo target gene occupancy. Rather, one of these disrupted binding to the TAL1 complex, implicating it in diseases caused by GATA1 mutations. Diminished TAL1 complex recruitment mainly impairs transcriptional activation and is linked to relatively mild disease. Notably, different substitutions at the same amino acid can selectively inhibit TAL1 complex or FOG1 binding, producing distinct cellular and clinical phenotypes. The structure-function relationships elucidated here were not predicted by prior in vitro or computational studies. Thus, our findings uncover novel disease mechanisms underlying GATA1 mutations and highlight the power of gene complementation assays for elucidating the molecular basis of genetic diseases.