Project description:Carbamazepine (CBZ) causes life-threating T-cell-mediated hypersensitivity reactions, including serious cutaneous adverse reactions (SCARs) and drug-induced liver injury (CBZ-DILI). In order to evaluate shared or phenotype-specific genetic predisposing factors for CBZ hypersensitivity reactions, we performed a meta-analysis of two genomewide association studies (GWAS) on a total of 43 well-phenotyped Northern and Southern European CBZ-SCAR cases and 10,701 population controls and a GWAS on 12 CBZ-DILI cases and 8,438 ethnically matched population controls. HLA-A*31:01 was identified as the strongest genetic predisposing factor for both CBZ-SCAR (odds ratio (OR) = 8.0; 95% CI 4.10-15.80; P = 1.2 × 10-9 ) and CBZ-DILI (OR = 7.3; 95% CI 2.47-23.67; P = 0.0004) in European populations. The association with HLA-A*31:01 in patients with SCAR was mainly driven by hypersensitivity syndrome (OR = 12.9; P = 2.1 × 10-9 ) rather than by Stevens-Johnson syndrome/toxic epidermal necrolysis cases, which showed an association with HLA-B*57:01. We also identified a novel risk locus mapping to ALK only for CBZ-SCAR cases, which needs replication in additional cohorts and functional evaluation.
Project description:BackgroundCarbamazepine causes various forms of hypersensitivity reactions, ranging from maculopapular exanthema to severe blistering reactions. The HLA-B*1502 allele has been shown to be strongly correlated with carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS-TEN) in the Han Chinese and other Asian populations but not in European populations.MethodsWe performed a genomewide association study of samples obtained from 22 subjects with carbamazepine-induced hypersensitivity syndrome, 43 subjects with carbamazepine-induced maculopapular exanthema, and 3987 control subjects, all of European descent. We tested for an association between disease and HLA alleles through proxy single-nucleotide polymorphisms and imputation, confirming associations by high-resolution sequence-based HLA typing. We replicated the associations in samples from 145 subjects with carbamazepine-induced hypersensitivity reactions.ResultsThe HLA-A*3101 allele, which has a prevalence of 2 to 5% in Northern European populations, was significantly associated with the hypersensitivity syndrome (P=3.5×10(-8)). An independent genomewide association study of samples from subjects with maculopapular exanthema also showed an association with the HLA-A*3101 allele (P=1.1×10(-6)). Follow-up genotyping confirmed the variant as a risk factor for the hypersensitivity syndrome (odds ratio, 12.41; 95% confidence interval [CI], 1.27 to 121.03), maculopapular exanthema (odds ratio, 8.33; 95% CI, 3.59 to 19.36), and SJS-TEN (odds ratio, 25.93; 95% CI, 4.93 to 116.18).ConclusionsThe presence of the HLA-A*3101 allele was associated with carbamazepine-induced hypersensitivity reactions among subjects of Northern European ancestry. The presence of the allele increased the risk from 5.0% to 26.0%, whereas its absence reduced the risk from 5.0% to 3.8%. (Funded by the U.K. Department of Health and others.).
Project description:An antiepileptic drug carbamazepine is well tolerated by the majority of patients, but can cause severe and potentialy fatal hypersensitivity reactions in a small number of individuals. The aim of this study was to identify genetic predictors of hypersensitivity reactions to carbamazepine. We undertook a genome-wide association study (GWAS) in 22 patients of European ancestry with carbamazepine-induced hypersensitivity syndrome (HSS) and compared our data with genotypes from a healthy population within the WTCCC. We performed imputation of classical HLA alleles according to a recently described method (Science. 2010 Dec 10;330(6010):1551-7. Epub 2010 Nov 4). GWAS statistical analysis was performed using logistic regression with an additive model of inheritance.
Project description:Although aromatic anticonvulsants are usually well tolerated, they can cause cutaneous adverse drug reactions in up to 10% of patients. The clinical manifestations of the antiepileptics-induced hypersensitivity reactions (AHR) vary from mild skin rashes to severe cutaneous drug adverse reactions which are related to high mortality and significant morbidity. Genetic polymorphisms in cytochrome P450 genes are associated with altered enzymatic activity and may contribute to the risk of AHR. Here we present a case-control study in which we genotyped SNPs of CYP2C19, 2C9 and 3A5 of 55 individuals with varying severities of AHR, 83 tolerant, and 366 healthy control subjects from São Paulo, Brazil. Clinical characterization was based on standardized scoring systems and drug patch test. All in vivo investigation followed the ENDA (European Network of Drug Allergy) recommendations. Genotype was determined by real time PCR using peripheral blood DNA as a template. Of all 504 subjects, 65% were females, 45% self-identified as Afro-American, 38% as Caucasian and 17% as having non-African mixed ascendancy. Amongst 55 subjects with AHR, 44 had severe cutaneous drug adverse reactions. Of the 46 drug patch tests performed, 29 (63%) were positive. We found a strong association between the absence of CYP3A5*3 and tolerant subjects when compared to AHR (p = 0.0002, OR = 5.28 [CI95% 2.09-14.84]). None of our groups presented positive association with CYP2C19 and 2C9 polymorphisms, however, both SNPs contributed to separation of cases and tolerants in a Classification and Regression Tree. Our findings indicate that drug metabolism genes can contribute in the tolerability of antiepileptics. CYP3A5*3 is the most prevalent CYP3A5 allele associated with reduced enzymatic function. The current study provides evidence that normal CYP3A5 activity might be a protective factor to aromatic antiepileptics-induced hypersensitivity reactions in Brazilian subjects.
Project description:Based on the prior knowledge of involvement of the human leukocyte antigen locus in Han Chinese patients with carbamazepine-induced Stevens-Johnson syndrome, we imputed the HLA types for each case and control subject from the array of SNPs in the Human610-Quad GWAS platform (NCBI Build 36.1). We then performed a genome-wide association test which included the imputed HLA alleles as markers.
Project description:Drug hypersensitivity reactions that resemble acute immune reactions are linked to certain human leucocyte antigen (HLA) alleles. Severe and life-threatening Stevens Johnson Syndrome and Toxic Epidermal Necrolysis following treatment with the antiepileptic and psychotropic drug Carbamazepine are associated with HLA-B*15:02; whereas carriers of HLA-A*31:01 develop milder symptoms. It is not understood how these immunogenic differences emerge genotype-specific. For HLA-B*15:02 an altered peptide presentation has been described following exposure to the main metabolite of carbamazepine that is binding to certain amino acids in the F pocket of the HLA molecule. The difference in the molecular mechanism of these diseases has not been comprehensively analyzed, yet; and is addressed in this study. Soluble HLA-technology was utilized to examine peptide presentation of HLA-A*31:01 in presence and absence of carbamazepine and its main metabolite and to examine the mode of peptide loading. Proteome analysis of drug-treated and untreated cells was performed. Alterations in sA*31:01-presented peptides after treatment with carbamazepine revealed different half-life times of peptide-HLA- or peptide-drug-HLA complexes. Together with observed changes in the proteome elicited through carbamazepine or its metabolite these results illustrate the mechanistic differences in carbamazepine hypersensitivity for HLA-A*31:01 or B*15:02 patients and constitute the bridge between pharmacology and pharmacogenetics for personalized therapeutics.
Project description:Carbamazepine (CBZ) is an aromatic anticonvulsant known to cause drug hypersensitivity reactions, which range in severity from relatively mild maculopapular exanthema to potentially fatal Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS-TEN). These reactions are known to be associated with human leukocyte antigen (HLA) class I alleles, and CBZ interacts preferentially with the related HLA proteins to activate CD8+ T-cells. This study aimed to evaluate the contribution of HLA class II in the effector mechanism(s) of CBZ hypersensitivity. CBZ-specific T-cells clones were generated from two healthy donors and two hypersensitive patients with high-risk HLA class I markers. Phenotype, function, HLA allele restriction, response pathways, and cross-reactivity of CBZ-specific T-cells were assessed using flow cytometry, proliferation analysis, enzyme-linked immunosorbent spot, and enzyme-linked immunosorbent assay. The association between HLA class II allele restriction and CBZ hypersensitivity was reviewed using Allele Frequency Net Database. Forty-four polyclonal CD4+ CBZ-specific T-cell clones were generated and found to be restricted to HLA-DR, particularly HLA-DRB1*07:01. This CD4+-mediated response proceeded through a direct pharmacological interaction between CBZ and HLA-DR molecules. Similar to the CD8+ response, CBZ-stimulated CD4+ clones secreted granulysin, a key mediator of SJS-TEN. Our database review revealed an association between HLA-DRB1*07:01 and CBZ-induced SJS-TEN. These findings implicate HLA class II antigen presentation as an additional pathogenic factor for CBZ hypersensitivity reactions. Both HLA class II molecules and drug-responsive CD4+ T-cells should be evaluated further to gain better insights into the pathogenesis of drug hypersensitivity reactions.
Project description:This open-label, single-sequence study in healthy subjects investigated the effects of steady-state carbamazepine on the pharmacokinetic (PK) profile of a single 2-mg dose of fingolimod. In period 1, a single oral dose of fingolimod 2 mg (day 1) was followed by PK and safety assessments up to 36 days. In period 2, carbamazepine was administered in flexible, up-titrated doses (600 mg twice daily maximum) for 49 days. Fingolimod was administered on day 35, followed by a study completion evaluation (day 71). The PK analysis included 23 of 26 of the enrolled subjects (88.5%). Coadministration of fingolimod at steady-state carbamazepine concentrations resulted in increased fingolimod CL/F by 67% through the induction of CYP3A4, a cytochrome with negligible involvement in fingolimod clearance in an uninduced state. Fingolimod Cmax was reduced by 18% and AUCinf by 40%, as was T1/2 (106 vs 163 hours). A similar trend was observed for fingolimod-P. Models linking fingolimod-P blood concentrations to lymphocyte count or annual relapse rate suggest that such a decrease would have a low impact on the treatment effect. However, in the absence of efficacy data of fingolimod at doses lower than the therapeutic dose, their coadministration should be used with caution.
Project description:We report a case of carbamazepine withdrawal syndrome following in utero exposure to carbamazepine related to a pharmacogenetic predisposition factor. The infant was born at 37 1/7 weeks' gestation by cesarean section to a mother treated for epilepsy with carbamazepine. One hour and thirty minutes after birth, the infant presented a respiratory distress with severe oxygen desaturation requiring intubation 5 h after birth. On the third day of life the infant developed clinical signs of a withdrawal syndrome which resolved progressively after 16 days and symptomatic treatment. The infant genotype analysis showed two low activity CYP2C9 allelic variants (∗2/∗3 heterozygote) predicting a CYP2C9 slow metabolizer phenotype which could explain reduced carbamazepine elimination and a late and long-lasting withdrawal symptoms observed 3 days after birth. The association of a withdrawal syndrome with carbamazepine exposure has not been previously reported and pharmacogenetic tests might therefore be useful in identifying patients at risk.