Ontology highlight
ABSTRACT: Background and purpose
Despite the rapidly increasing global burden of ischemic stroke, no therapeutic options for neuroprotection against stroke currently exist. Recent studies have shown that autophagy plays a key role in ischemic neuronal death, and treatments that target autophagy may represent a novel strategy in neuroprotection. We investigated whether autophagy is regulated by carnosine, an endogenous pleiotropic dipeptide that has robust neuroprotective activity against ischemic brain damage.Methods
We examined the effect of carnosine on mitochondrial dysfunction and autophagic processes in rat focal ischemia and in neuronal cultures.Results
Autophagic pathways such as reduction of phosphorylated mammalian target of rapamycin (mTOR)/p70S6K and the conversion of microtubule-associated protein 1 light chain 3 (LC3)-I to LC3-II were enhanced in the ischemic brain. However, treatment with carnosine significantly attenuated autophagic signaling in the ischemic brain, with improvement of brain mitochondrial function and mitophagy signaling. The protective effect of carnosine against autophagy was also confirmed in primary cortical neurons.Conclusions
Taken together, our data suggest that the neuroprotective effect of carnosine is at least partially mediated by mitochondrial protection and attenuation of deleterious autophagic processes. Our findings shed new light on the mechanistic pathways that this exciting neuroprotective agent influences.
SUBMITTER: Baek SH
PROVIDER: S-EPMC4211270 | biostudies-literature | 2014 Aug
REPOSITORIES: biostudies-literature

Baek Seung-Hoon SH Noh Ah Reum AR Kim Kyeong-A KA Akram Muhammad M Shin Young-Jun YJ Kim Eun-Sun ES Yu Seong Woon SW Majid Arshad A Bae Ok-Nam ON
Stroke 20140617 8
<h4>Background and purpose</h4>Despite the rapidly increasing global burden of ischemic stroke, no therapeutic options for neuroprotection against stroke currently exist. Recent studies have shown that autophagy plays a key role in ischemic neuronal death, and treatments that target autophagy may represent a novel strategy in neuroprotection. We investigated whether autophagy is regulated by carnosine, an endogenous pleiotropic dipeptide that has robust neuroprotective activity against ischemic ...[more]