Unknown

Dataset Information

0

Temperature-induced viral resistance in Emiliania huxleyi (Prymnesiophyceae).


ABSTRACT: Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi's susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance.

SUBMITTER: Kendrick BJ 

PROVIDER: S-EPMC4236053 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Temperature-induced viral resistance in Emiliania huxleyi (Prymnesiophyceae).

Kendrick B Jacob BJ   DiTullio Giacomo R GR   Cyronak Tyler J TJ   Fulton James M JM   Van Mooy Benjamin A S BA   Bidle Kay D KD  

PloS one 20141118 11


Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperat  ...[more]

Similar Datasets

| S-EPMC5860772 | biostudies-literature
| S-EPMC3834299 | biostudies-literature
| S-EPMC4904034 | biostudies-literature
| S-EPMC1838821 | biostudies-literature
| S-EPMC5371806 | biostudies-literature
| S-EPMC4922559 | biostudies-literature
| S-EPMC2572935 | biostudies-literature
| S-EPMC2689785 | biostudies-literature