Ontology highlight
ABSTRACT: Background
Recent randomized controlled trials have challenged the concept that increased high density lipoprotein cholesterol (HDL-C) levels are associated with coronary artery disease (CAD) risk reduction. The causal role of HDL-C in the development of atherosclerosis remains unclear. To increase precision and to minimize residual confounding, we exploited the cholesteryl ester transfer protein (CETP)-TaqIB polymorphism as an instrument based on Mendelian randomization.Methods
The Mendelian randomization analysis was performed by two steps. First, we conducted a meta-analysis of 47 studies, including 23,928 cases and 27,068 controls, to quantify the relationship between the TaqIB polymorphism and the CAD risk. Next, the association between the TaqIB polymorphism and HDL-C was assessed among 5,929 Caucasians. We further employed Mendelian randomization to evaluate the causal effect of HDL-C on CAD based on the findings from the meta-analysis.Results
The overall comparison of the B2 allele with the B1 allele yielded a significant risk reduction of CAD (P < 0.0001; OR = 0.88; 95% CI: 0.84-0.92) with substantial between-study heterogeneity (I² = 55.2%; P(heterogeneity) <0.0001). The result was not materially changed after excluding the Hardy-Weinberg Equilibrium (HWE)-violation studies. Compared with B1B1 homozygotes, Caucasian carriers of the B2 allele had a 0.25 mmol/L increase in HDL-C level (95% CI: 0.20-0.31; P <0.0001; I² = 0; P(heterogeneity) =0.87). However, a 1 standard deviation (SD) elevation in HDL-C levels due to the TaqIB polymorphism, was marginal associated with CAD risk (OR =0.79; 95% CI: 0.54-1.03; P =0.08).Conclusions
Taken together, our results lend support to the concept that increased HDL-C cannot be translated into a reduction in CAD risk.
SUBMITTER: Wu Z
PROVIDER: S-EPMC4258818 | biostudies-literature | 2014 Oct
REPOSITORIES: biostudies-literature
Wu Zhijun Z Lou Yuqing Y Qiu Xiaochun X Liu Yan Y Lu Lin L Chen Qiujing Q Jin Wei W
BMC medical genetics 20141023
<h4>Background</h4>Recent randomized controlled trials have challenged the concept that increased high density lipoprotein cholesterol (HDL-C) levels are associated with coronary artery disease (CAD) risk reduction. The causal role of HDL-C in the development of atherosclerosis remains unclear. To increase precision and to minimize residual confounding, we exploited the cholesteryl ester transfer protein (CETP)-TaqIB polymorphism as an instrument based on Mendelian randomization.<h4>Methods</h4> ...[more]