Project description:Bacterial gut symbiont communities are critical for the health of many insect species. However, little is known about how microbial communities vary among host species or how they respond to anthropogenic disturbances. Bacterial communities that differ in richness or composition may vary in their ability to provide nutrients or defenses. We used deep sequencing to investigate gut microbiota of three species in the genus Bombus (bumble bees). Bombus are among the most economically and ecologically important non-managed pollinators. Some species have experienced dramatic declines, probably due to pathogens and land-use change. We examined variation within and across bee species and between semi-natural and conventional agricultural habitats. We categorized as 'core bacteria' any operational taxonomic units (OTUs) with closest hits to sequences previously found exclusively or primarily in the guts of honey bees and bumble bees (genera Apis and Bombus). Microbial community composition differed among bee species. Richness, defined as number of bacterial OTUs, was highest for B. bimaculatus and B. impatiens. For B. bimaculatus, this was due to high richness of non-core bacteria. We found little effect of habitat on microbial communities. Richness of non-core bacteria was negatively associated with bacterial abundance in individual bees, possibly due to deeper sampling of non-core bacteria in bees with low populations of core bacteria. Infection by the gut parasite Crithidia was negatively associated with abundance of the core bacterium Gilliamella and positively associated with richness of non-core bacteria. Our results indicate that Bombus species have distinctive gut communities, and community-level variation is associated with pathogen infection.
Project description:Gut microbial communities are critical for the health of many insect species. However, little is known about how gut microbial communities respond to anthropogenic changes and how such changes affect host-pathogen interactions. In this study, we used deep sequencing to investigate and compare the composition of gut microbial communities within the midgut and ileum (both bacteria and fungi) in Bombus terrestris queens collected from natural (forest) and urbanized habitats. Additionally, we investigated whether the variation in gut microbial communities under each habitat affected the prevalence of two important bumblebee pathogens that have recently been associated with Bombus declines (Crithidia bombi and Nosema bombi). Microbial community composition differed strongly among habitat types, both for fungi and bacteria. Fungi were almost exclusively associated with bumblebee queens from the forest habitats, and were not commonly detected in bumblebee queens from the urban sites. Further, gut bacterial communities of urban B. terrestris specimens were strongly dominated by bee-specific core bacteria like Snodgrassella (Betaproteobacteria) and Gilliamella (Gammaproteobacteria), whereas specimens from the forest sites contained a huge fraction of environmental bacteria. Pathogen infection was very low in urban populations and infection by Nosema was only observed in specimens collected from forest habitats. No significant relationship was found between pathogen prevalence and microbial gut diversity. However, there was a significant and negative relationship between prevalence of Nosema and relative abundance of the core resident Snodgrassella, supporting its role in pathogen defense. Overall, our results indicate that land-use change may lead to different microbial gut communities in bumblebees, which may have implications for bumblebee health, survival and overall fitness.
Project description:High temperatures (e.g., fever) and gut microbiota can both influence host resistance to infection. However, effects of temperature-driven changes in gut microbiota on resistance to parasites remain unexplored. We examined the temperature dependence of infection and gut bacterial communities in bumble bees infected with the trypanosomatid parasite Crithidia bombi. Infection intensity decreased by over 80% between 21 and 37°C. Temperatures of peak infection were lower than predicted based on parasite growth in vitro, consistent with mismatches in thermal performance curves of hosts, parasites and gut symbionts. Gut bacterial community size and composition exhibited slight but significant, non-linear, and taxon-specific responses to temperature. Abundance of total gut bacteria and of Orbaceae, both negatively correlated with infection in previous studies, were positively correlated with infection here. Prevalence of the bee pathogen-containing family Enterobacteriaceae declined with temperature, suggesting that high temperature may confer protection against diverse gut pathogens. Our results indicate that resistance to infection reflects not only the temperature dependence of host and parasite performance, but also temperature-dependent activity of gut bacteria. The thermal ecology of gut parasite-symbiont interactions may be broadly relevant to infectious disease, both in ectothermic organisms that inhabit changing climates, and in endotherms that exhibit fever-based immunity.
Project description:The conservation of insect pollinators is drawing attention because of reported declines in bee species and the 'ecosystem services' they provide. This issue has been brought to a head by recent devastating losses of honey bees throughout North America (so called, 'Colony Collapse Disorder'); yet, we still have little understanding of the cause(s) of bee declines. Wild bumble bees (Bombus spp.) have also suffered serious declines and circumstantial evidence suggests that pathogen 'spillover' from commercially reared bumble bees, which are used extensively to pollinate greenhouse crops, is a possible cause. We constructed a spatially explicit model of pathogen spillover in bumble bees and, using laboratory experiments and the literature, estimated parameter values for the spillover of Crithidia bombi, a destructive pathogen commonly found in commercial Bombus. We also monitored wild bumble bee populations near greenhouses for evidence of pathogen spillover, and compared the fit of our model to patterns of C. bombi infection observed in the field. Our model predicts that, during the first three months of spillover, transmission from commercial hives would infect up to 20% of wild bumble bees within 2 km of the greenhouse. However, a travelling wave of disease is predicted to form suddenly, infecting up to 35-100% of wild Bombus, and spread away from the greenhouse at a rate of 2 km/wk. In the field, although we did not observe a large epizootic wave of infection, the prevalences of C. bombi near greenhouses were consistent with our model. Indeed, we found that spillover has allowed C. bombi to invade several wild bumble bee species near greenhouses. Given the available evidence, it is likely that pathogen spillover from commercial bees is contributing to the ongoing decline of wild Bombus in North America. Improved management of domestic bees, for example by reducing their parasite loads and their overlap with wild congeners, could diminish or even eliminate pathogen spillover.
Project description:South America is populated by a wide range of bumble bee species that represent an important source of biodiversity, supporting pollination services in natural and agricultural ecosystems. These pollinators provide unique specific microbial niches, populated by a wide number of microorganisms such as symbionts, environmental opportunistic bacteria, and pathogens. Recently, it was demonstrated how microbial populations are shaped by trophic resources and environmental conditions but also by anthropogenic pressure, which strongly affects microbes' functionality. This study is focused on the impact of different land uses (natural reserve, agroecosystem, and suburban) on the gut microbiome composition of two South American bumble bees, Bombus pauloensis and Bombus bellicosus. Gut microbial DNA extracted from collected bumble bees was sequenced on the Illumina MiSeq platform and correlated with land use. Nosema ceranae load was analyzed with qPCR and correlated with microbiome data. Significant differences in gut microbiome composition between the two wild bumble bee species were highlighted, with notable variations in α- and β-diversity across study sites. Bombus bellicosus showed a high abundance of Pseudomonas, a genus that includes environmental saprobes, and was found to be the second major taxa populating the gut microbiome, probably indicating the vulnerability of this host to environmental pollution. Pathogen analysis unveils a high prevalence of N. ceranae, with B. bellicosus showing higher susceptibility. Finally, Gilliamella exhibited a negative correlation with N. ceranae, suggesting a potential protective role of this commensal taxon. Our findings underscore the importance of considering microbial dynamics in pollinator conservation strategies, highlighting potential interactions between gut bacteria and pathogens in shaping bumble bee health.
Project description:BackgroundBumble bees and other wild bees are important pollinators of wild flowers and several cultivated crop plants, and have declined in diversity and abundance during the last decades. The main cause of the decline is believed to be habitat destruction and fragmentation associated with urbanization and agricultural intensification. Urbanization is a process that involves dramatic and persistent changes of the landscape, increasing the amount of built-up areas while decreasing the amount of green areas. However, urban green areas can also provide suitable alternative habitats for wild bees.Methodology/principal findingsWe studied bumble bees in allotment gardens, i.e. intensively managed flower rich green areas, along a gradient of urbanization from the inner city of Stockholm towards more rural (periurban) areas. Keeping habitat quality similar along the urbanization gradient allowed us to separate the effect of landscape change (e.g. proportion impervious surface) from variation in habitat quality. Bumble bee diversity (after rarefaction to 25 individuals) decreased with increasing urbanization, from around eight species on sites in more rural areas to between five and six species in urban allotment gardens. Bumble bee abundance and species composition were most affected by qualities related to the management of the allotment areas, such as local flower abundance. The variability in bumble bee visits between allotment gardens was higher in an urban than in a periurban context, particularly among small and long-tongued bumble bee species.Conclusions/significanceOur results suggest that allotment gardens and other urban green areas can serve as important alternatives to natural habitats for many bumble bee species, but that the surrounding urban landscape influences how many species that will be present. The higher variability in abundance of certain species in the most urban areas may indicate a weaker reliability of the ecosystem service pollination in areas strongly influenced by human activity.
Project description:Bumble bees (Bombus spp.) are important pollinators insects involved in the maintenance of natural ecosystems and food production. Bombus pauloensis is a widely distributed species in South America, that recently began to be managed and commercialized in this region. The movement of colonies within or between countries may favor the dissemination of parasites and pathogens, putting into risk while populations of B. pauloensis and other native species. In this study, wild B. pauloensis queens and workers, and laboratory reared workers were screened for the presence of phoretic mites, internal parasites (microsporidia, protists, nematodes and parasitoids) and RNA viruses (Black queen cell virus (BQCV), Deformed wing virus (DWV), Acute paralysis virus (ABCV) and Sacbrood virus (SBV)). Bumble bee queens showed the highest number of mite species, and it was the only group where Conopidae and S. bombi were detected. In the case of microsporidia, a higher prevalence of N. ceranae was detected in field workers. Finally, the bumble bees presented the four RNA viruses studied for A. mellifera, in proportions similar to those previously reported in this species. Those results highlight the risks of spillover among the different species of pollinators.
Project description:Bumble bees (Bombus spp.) are important pollinators for both wild and agriculturally managed plants. We give an overview of what is known about the diverse community of internal potentially deleterious bumble bee symbionts, including viruses, bacteria, protozoans, fungi, and nematodes, as well as methods for their detection, quantification, and control. We also provide information on assessment of risk for select bumble bee symbionts and highlight key knowledge gaps. This information is crucial for ongoing efforts to establish parasite- conscious programs for future commerce in bumble bees for crop pollination, and to mitigate the problems with pathogen spillover to wild populations.
Project description:Bumble bees are important pollinators broadly used by farmers in greenhouses and under conditions in which honeybee pollination is limited. As such, bumble bees are increasingly being reared for commercial purposes, which brings into question whether individuals reared under laboratory conditions are fully capable of physiological adaptation to field conditions. To understand the changes in bumble bee organism caused by foraging, we compared the fundamental physiological and immunological parameters of Bombus terrestris workers reared under constant optimal laboratory conditions with workers from sister colonies that were allowed to forage for two weeks in the field. Nutritional status and immune response were further determined in wild foragers of B.terrestris that lived under the constant influence of natural stressors. Both wild and laboratory-reared workers subjected to the field conditions had a lower protein concentration in the hemolymph and increased antimicrobial activity, the detection of which was limited in the non-foragers. However, in most of the tested parameters, specifically the level of carbohydrates, antioxidants, total hemocyte concentration in the hemolymph and melanization response, we did not observe any significant differences between bumble bee workers produced in the laboratory and wild animals, nor between foragers and non-foragers. Our results show that bumble bees reared under laboratory conditions can mount a sufficient immune response to potential pathogens and cope with differential food availability in the field, similarly to the wild bumble bee workers.
Project description:The brain-gut-microbiome axis is an emerging area of study, particularly in vertebrate systems. Existing evidence suggests that gut microbes can influence basic physiological functions and that perturbations to the gut microbiome can have deleterious effects on cognition and lead to neurodevelopmental disorders. While this relationship has been extensively studied in vertebrate systems, little is known about this relationship in insects. We hypothesized that because of its importance in bee health, the gut microbiota influences learning and memory in adult bumble bees. As an initial test of whether there is a brain-gut-microbiome axis in bumble bees, we reared microbe-inoculated and microbe-depleted bees from commercial Bombus impatiens colonies. We then conditioned experimental bees to associate a sucrose reward with a color and tested their ability to learn and remember the rewarding color. We found no difference between microbe-inoculated and microbe-depleted bumble bees in performance during the behavioral assay. While these results suggest that the brain-gut-microbiome axis is not evident in Bombus impatiens, future studies with different invertebrate systems are needed to further investigate this phenomenon.