Project description:A VIM-5-producing Enterobacter cloacae isolate (EDV/1) was identified in a collection of clinical strains stored before 2002. The gene, bla(VIM-5), was located on a 2,712-bp BamHI-HindIII fragment of a 23-kbp (approximately) nonconjugative plasmid (pEDV5) in a class 1 integron as a single gene cassette.
Project description:The metallo-β-lactamase GIM-1 (German imipenemase) has been found so far only in clinical isolates of Pseudomonas aeruginosa from Germany. Here we report the detection of bla(GIM-1) in a clinical strain of Serratia marcescens that was isolated from urine, blood, and wound samples over a period of 20 months. The strain was repeatedly isolated from one patient in two German hospitals and an outpatient department located in the region in which all previously described GIM-1-producing P. aeruginosa strains were identified.
Project description:Cefiderocol is a promising novel siderophore cephalosporin for the treatment of multidrug-resistant Gram-negative bacilli and with stability against degradation by metallo-β-lactamases. Nonetheless, the emergence of cefiderocol in metallo-β-lactamase-producing Enterobacterales during therapy has been reported on more than one occasion. To understand the underlying mechanisms and factors facilitating the resistance development, we conducted an in vitro evolution experiment using clinical E. cloacae isolates via serial passaging under cefiderocol pressure. In this study, we showed that the presence of the New Delhi metallo-β-lactamase (NDM) facilitates the emergence of resistance via nonsynonymous mutations of the CirA catecholate siderophore receptor. Inhibition of metallo-β-lactamase activity using dipicolinic acid prevented the emergence of cefiderocol-resistant mutants successfully. This finding implies that caution should be taken when using cefiderocol for the treatment of infections caused by metallo-β-lactamase-producing bacteria.
Project description:BACKGROUND:Enterobacter cloacae complex (ECC) is one of the most common extended-spectrum β-lactamase and carbapenemase-producing pathogen that threatens millions of the elderly and vulnerable sick persons. The objective of this study was to perform the molecular characteristics of the carbapenem-resistant E. cloacae complex (CREC) emerged in Heilongjiang Province of China. METHODS:Six CREC strains were isolated from the patients with infectious diseases. The identities of ECC isolates were confirmed by sequencing the polymerase chain reaction (PCR) products of 16S rRNA gene. The characterization of the CREC isolates were analyzed by sequencing PCR products of the carbapenemase, ampC and fluoroquinolone resistance genes and performing multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE) and whole genome sequencing. RESULTS:All 6 isolates harbored multiple resistance genes. Of them, 5 carried metallo-β-lactamases and one was blaKPC-2-positive. The levofloxacin and ciprofloxacin-resistant strains had substitutions of gyrA83, gyrA87, and parC80 in the quinolone-resistance determining regions. The MLST analyses revealed that 6 isolates belonged to five sequence types (ST520, ST528, ST1119, ST1120, and ST93) while the PFGE patterns of the isolates fallen into four clusters. The strain ST1120 was found to carry two separated plasmids that encode blaNDM-1 and blaIMP-4. CONCLUSIONS:Our study, for the first time, identified a CREC strain that co-produces blaNDM-1 and blaIMP-4 in the Northeast China. Our finding emphasizes an urgent need for more intensive surveillance and precaution measures to prevent the CERC spread.
Project description:BackgroundESBL-producing bacteria are a clinical problem in the management of diseases caused by these pathogens. Worldwide, systemic infections with BL enzymes are evolving by mutations from classical bla genes in an intensified manner and they continue to be transferred across species.ResultsE.cloacae BF1417 isolate and its transconjugants gave positive results with the DDST, suggesting the presence of ESBL. Sequence analysis revealed a bla SHV-ESBL-type gene that differs from the gene encoding SHV-1 by five point mutations resulting in three amino acid substitutions in the coding region: C123R, I282T and L286P. This novel SHV-type enzyme was designated SHV-128. The conjugation tests and plasmid characterization showed that the bla SHV-128 is located on a conjugative plasmid IncFII type. Expression studies demonstrated that the above mutations participated in drug resistance, hydrolysis of extended spectrum β-lactam and the change of the isoelectric point of the protein.ConclusionThese findings underscore the diversity by which antibiotic resistance can arise and the evolutionary potential of the clinically important ESBL enzymes. In addition, this study highlights the need for systematic surveillance of ESBL-mediated resistance as well as in clinical areas and communities.
Project description:Enterobacter cloacae Ecl261 was isolated with Escherichia coli Ec257 from the urine of a patient living in a nursing home. Both isolates were resistant to ticarcillin (MICs, 1,024 microg/ml), without significant potentiation of its activity by 2 microg of clavulanate per ml (MICs, 512 microg/ml), and susceptible to naturally active cephalosporins. This inhibitor-resistant phenotype was conferred in both strains by similar conjugative plasmids of 40 kb (Ecl261) and 30 kb (Ec257), which also conveyed resistance to sulfonamides and trimethoprim. Clinical and transconjugant strains produced a beta-lactamase with a pI of 5.2 which belonged to the TEM family, as indicated by specific PCR amplification. Compared with TEM-1, this enzyme exhibited lower catalytic efficiencies (14- and 120-fold less for amoxicillin and ticarcillin, respectively), and higher concentrations of beta-lactamase inhibitors were required to yield a 50% reduction in benzylpenicillin hydrolysis (750-, 82-, and 50-fold higher concentrations for clavulanate, sulbactam, and tazobactam, respectively). Gene sequencing revealed four nucleotide differences with the nucleotide sequence of bla(TEM-1A). The first replacement (T32C), located in the promoter region, was described as being responsible for the increase in the level of beta-lactamase production. The three other changes led to amino acid substitutions that define a new inhibitor-resistant TEM (IRT) beta-lactamase, TEM-80 (alternate name, IRT-24). Two of them, Met69Leu and Asn276Asp, have previously been related to inhibitor resistance. The additional mutation, Ile127Val, was demonstrated by site-directed mutagenesis to have a very weak effect, at least alone, on the IRT phenotype. This is the first description of an IRT beta-lactamase in E. cloacae. The horizontal transfer of bla(TEM-80) may have occurred either from Ec257 to Ecl261 or in the reverse order.
Project description:Enterobacter cloacae has recently emerged as one of the most common carbapenem-resistant Enterobacteriaceae. The emergence and spread of metallo-β-lactamase-producing E. cloacae have posed an immediate threat globally. Here, we investigated the molecular characteristics of 84 carbapenem-resistant Enterobacter cloacae (CREL) collected from three tertiary hospitals in China between 2012 and 2016. Species identification and antimicrobial susceptibility testing were performed using a VITEK-2 system. Carbapenems, polymyxins B, and tigecycline were tested by broth microdilution method. The carbapenem in activation method (CIM) and cefoxitin three-dimensional test were used to detect carbapenemase and AmpC β-lactamase, respectively. Isolates were screened for β-lactam resistance genes by PCR, and expression of ompC and ompF was determined by qRT-PCR. Genetic relatedness was performed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST), while selected isolates were subjected to whole-genome sequencing. Among the 84 CREL isolates, 50 (59.5%) were detected as carbapenemase producers. NDM-1 was the dominant carbapenemase (80.0%), followed by IMP-26 (8.0%) and IMP-4 (6.0%). Notably, we identified the first NDM-1 and IMP-1 co-producing E. cloacae, carrying plasmids of several incompatibility (Inc) groups, including IncHI2, IncHI2A, and IncN. Most isolates showed decreased expression of ompC and/or ompF, and contained a broad distribution of ESBLs and AmpC β-lactamases. These findings suggested that different molecular mechanisms, including carbapenemase, ESBL and/or AmpC plus loss of porins, have contributed to carbapenem resistance. The bla NDM-1-harboring plasmids contained highly conserved gene environment around bla NDM-1 (bla NDM-1-ble MBL-trpF-dsbD-cutA1-groES-groEL), which could be associated with the potential dissemination of bla NDM-1. IMP-type MBL was located within a variety of integrons and usually contained various gene cassettes encoding multidrug resistance. These isolates produced 54 different pulsotypes, and were classified into 42 STs by MLST. Nineteen bla NDM-1-positive E. cloacae isolates obtained from Ningxia had the same pulsotype (PFGE type 1), belonging to ST78 within clonal complex 74 (CC74). The plasmid-based replicon typing indicated that IncX3 plasmids mediated the dissemination of bla NDM-1 among these homologous strains. This is the first report on the outbreak of NDM-1-producing E. cloacae ST78 with contribution of IncX3 plasmids in Northwestern China. There's an immediate need to intensify surveillance attentively to prevent and control the further spread of NDM-1 in China.
Project description:Emergence of cefiderocol resistance among carbapenemase-producing Enterobacterales, particularly those in the Enterobacter cloacae complex (ECC), is becoming of alarming concern; however, the mechanistic basis of this phenomenon remains poorly understood. We describe the acquisition of VIM-1-mediated reduced cefiderocol susceptibility (MICs 0.5 to 4 mg/L) in a collection of 54 carbapenemase-producing isolates belonging to the ECC. MICs were determined by reference methodologies. Antimicrobial resistance genomic analysis was performed through hybrid WGS. The impact of VIM-1 production on cefiderocol resistance in the ECC background was examined at microbiological, molecular, biochemical, and atomic levels. Antimicrobial susceptibility testing yielded 83.3% susceptible isolates and MIC50/90 values of 1/4 mg/L. Decreased susceptibility to cefiderocol was mainly associated with isolates producing VIM-1, with cefiderocol MICs 2- to 4-fold higher than for isolates carrying other types of carbapenemases. E. cloacae and Escherichia coli VIM-1 transformants displayed significantly enhanced cefiderocol MICs. Biochemical assays with purified VIM-1 protein revealed low but detectable cefiderocol hydrolysis. Simulation studies revealed how cefiderocol is anchored to the VIM-1 active site. Additional molecular assays and WGS data analysis highlighted the implication of SHV-12 coproduction and suggested the inactivation of the FcuA-like siderophore receptor as further contributors to the higher cefiderocol MICs. Our findings warn of the potential of the VIM-1 carbapenemase to at least partly limit the activity of cefiderocol in the ECC. This effect is probably enhanced due to combination with additional mechanisms, such as ESBL production and siderophore inactivation, and indicates the need for active surveillance to extend the life span of this promising cephalosporin.
Project description:Resistome analysis of clinical VIM-1-producing Enterobacter cloacae strain CY01 from China revealed the presence of multiple resistance determinants. Two resistance plasmids were identified in CY01. The pCY-VIM plasmid was 14 kb in size and possessed a replicase gene (repA), a gene cluster encoding the partitioning function (parABC), and a carbapenemase gene (blaVIM-1). Another 5.9-kb plasmid, pCY-MdT, with an aac(6')-Ib gene, was very closely related (13 nucleotide differences) to pMdT1, a ColE1 plasmid carrying aac(6')-Ib-cr4.
Project description:Between February 2006 and October 2009, 38 patients in different wards at the A Coruña University Hospital (northwest Spain) were either infected with or colonized by an epidemic, multidrug-resistant (MDR), and extended-spectrum-β-lactamase (ESBL)-producing strain of Enterobacter cloacae (EbSF), which was susceptible only to carbapenems. Semiautomated repetitive extragenic palindromic sequence-based PCR (rep-PCR) and pulsed-field gel electrophoresis (PFGE) analysis revealed that all of the E. cloacae isolates belonged to the same clone. Cloning and sequencing enabled the detection of the SFO-1 ESBL in the epidemic strain and the description of its genetic environment. The presence of the ampR gene was detected upstream of bla(SFO-1), and two complete sequences of IS26 surrounding ampR and ampA were detected. These IS26 sequences are bordered by complete left and right inverted repeats (IRL and IRR, respectively), which suggested that they were functional. The whole segment flanked by two IS26 copies may be considered a putative large composite transposon. A gene coding for aminoglycoside acetyltransferase (gentamicin resistance gene [aac3]) was found downstream of the 3' IS26. Despite the implementation of strict infection control measures, strain EbSF spread through different areas of the hospital. A case-control study was performed to assess risk factors for EbSF acquisition. A multivariate analysis revealed that the prior administration of β-lactam antibiotics, chronic renal failure, tracheostomy, and prior hospitalization were statistically associated with SFO-1-producing E. cloacae acquisition. This study describes for the first time an outbreak in which an SFO-1-producing E. cloacae strain was involved. Note that so far, this β-lactamase has previously been isolated in only a single case of E. cloacae infection in Japan.