Unknown

Dataset Information

0

LeadMine: a grammar and dictionary driven approach to entity recognition.


ABSTRACT:

Background

Chemical entity recognition has traditionally been performed by machine learning approaches. Here we describe an approach using grammars and dictionaries. This approach has the advantage that the entities found can be directly related to a given grammar or dictionary, which allows the type of an entity to be known and, if an entity is misannotated, indicates which resource should be corrected. As recognition is driven by what is expected, if spelling errors occur, they can be corrected. Correcting such errors is highly useful when attempting to lookup an entity in a database or, in the case of chemical names, converting them to structures.

Results

Our system uses a mixture of expertly curated grammars and dictionaries, as well as dictionaries automatically derived from public resources. We show that the heuristics developed to filter our dictionary of trivial chemical names (from PubChem) yields a better performing dictionary than the previously published Jochem dictionary. Our final system performs post-processing steps to modify the boundaries of entities and to detect abbreviations. These steps are shown to significantly improve performance (2.6% and 4.0% F1-score respectively). Our complete system, with incremental post-BioCreative workshop improvements, achieves 89.9% precision and 85.4% recall (87.6% F1-score) on the CHEMDNER test set.

Conclusions

Grammar and dictionary approaches can produce results at least as good as the current state of the art in machine learning approaches. While machine learning approaches are commonly thought of as "black box" systems, our approach directly links the output entities to the input dictionaries and grammars. Our approach also allows correction of errors in detected entities, which can assist with entity resolution.

SUBMITTER: Lowe DM 

PROVIDER: S-EPMC4331695 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

LeadMine: a grammar and dictionary driven approach to entity recognition.

Lowe Daniel M DM   Sayle Roger A RA  

Journal of cheminformatics 20150119 Suppl 1 Text mining for chemistry and the CHEMDNER trac


<h4>Background</h4>Chemical entity recognition has traditionally been performed by machine learning approaches. Here we describe an approach using grammars and dictionaries. This approach has the advantage that the entities found can be directly related to a given grammar or dictionary, which allows the type of an entity to be known and, if an entity is misannotated, indicates which resource should be corrected. As recognition is driven by what is expected, if spelling errors occur, they can be  ...[more]

Similar Datasets

| S-EPMC11373323 | biostudies-literature
| S-EPMC4331686 | biostudies-literature
| S-EPMC1561801 | biostudies-literature
| S-EPMC117281 | biostudies-literature
| S-EPMC6039941 | biostudies-literature
| S-EPMC10977791 | biostudies-literature
| S-EPMC7872256 | biostudies-literature
| S-EPMC5558737 | biostudies-other
| S-EPMC8345494 | biostudies-literature
| S-EPMC11636975 | biostudies-literature