Project description:Considerable evidence indicates that sleep is essential for learning and memory. Drosophila melanogaster has emerged as a novel model for studying sleep. We previously found a short sleeper mutant, fumin (fmn), and identified its mutation in the dopamine transporter gene. We reported similarities in the molecular basis of sleep and arousal regulation between mammals and Drosophila. In aversive olfactory learning tasks, fmn mutants demonstrate defective memory retention, which suggests an association between sleep and memory. In an attempt to discover additional sleep related genes in Drosophila, we carried out a microarray analysis comparing mRNA expression in heads of fmn and control flies and found that 563 genes are differentially expressed. Next, using the pan-neuronal Gal4 driver elav-Gal4 and UAS-RNA interference (RNAi) to knockdown individual genes, we performed a functional screen. We found that knockdown of the NMDA type glutamate receptor channel gene (Nmdar1) (also known as dNR1) reduced sleep. The NMDA receptor (NMDAR) plays an important role in learning and memory both in Drosophila and mammals. The application of the NMDAR antagonist, MK-801, reduced sleep in control flies, but not in fmn. These results suggest that NMDAR promotes sleep regulation in Drosophila.
Project description:Flies achieve supreme flight maneuverability through a small set of miniscule steering muscles attached to the wing base. The fast flight maneuvers arise from precisely timed activation of the steering muscles and the resulting subtle modulation of the wing stroke. In addition, slower modulation of wing kinematics arises from changes in the activity of indirect flight muscles in the thorax. We investigated if these modulations can be described as a superposition of a limited number of elementary deformations of the wing stroke that are under independent physiological control. Using a high-speed computer vision system, we recorded the wing motion of tethered flying fruit flies for up to 12,000 consecutive wing strokes at a sampling rate of 6250 Hz. We then decomposed the joint motion pattern of both wings into components that had the minimal mutual information (a measure of statistical dependence). In 100 flight segments measured from 10 individual flies, we identified 7 distinct types of frequently occurring least-dependent components, each defining a kinematic pattern (a specific deformation of the wing stroke and the sequence of its activation from cycle to cycle). Two of these stroke deformations can be associated with the control of yaw torque and total flight force, respectively. A third deformation involves a change in the downstroke-to-upstroke duration ratio, which is expected to alter the pitch torque. A fourth kinematic pattern consists in the alteration of stroke amplitude with a period of 2 wingbeat cycles, extending for dozens of cycles. Our analysis indicates that these four elementary kinematic patterns can be activated mutually independently, and occur both in isolation and in linear superposition. The results strengthen the available evidence for independent control of yaw torque, pitch torque, and total flight force. Our computational method facilitates systematic identification of novel patterns in large kinematic datasets.
Project description:Background. Diurnal rhythms of protein synthesis controlled by the biological clock underlie the rhythmic physiology in the fruit fly, Drosophila melanogaster. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation in D. melanogaster. Materials and Methods. Total protein collected from fly samples harvested at 4 h intervals over the 24 h period were subjected to two-dimensional gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software. Results. A total of 124 protein spots/clusters were identified using MS/MS analysis. Significant variation in the expression of 88 proteins over the 24-h period was observed. A relatively higher number of proteins was upregulated during the night compared to the daytime. The complexity of temporal regulation of the D. melanogaster proteome was further reflected from functional annotations of the differently expressed proteins, with those that were upregulated at night being restricted to the heat shock proteins and proteins involved in metabolism, muscle activity, protein synthesis/folding/degradation and apoptosis, whilst those that were overexpressed in the daytime were apparently involved in metabolism, muscle activity, ion-channel/cellular transport, protein synthesis/folding/degradation, redox homeostasis, development and transcription. Conclusion. Our data suggests that a wide range of proteins synthesized by the fruit fly, D. melanogaster, is under the regulation of the biological clock.
Project description:The physiological and behavioral influences of 2.45 GHz microwaves on Drosophila melanogaster were examined. Standing waves transitioned into heat energy effectively when passing through the insect body. On the contrary, travelling waves did not transit into heat energy in the insect body. This indicated that there was no concern regarding the thermal effects of microwave irradiation for levels of daily usage. However, we detected genotoxicity and behavioral alterations associated with travelling wave irradiation, which can be attributed to the non-thermal effects of the waves. Electron spin resonance (ESR) revealed that fruit flies possessed paramagnetic substances in the body such as Fe3+, Cu2+, Mn2+, and organic radicals. The temperature dependent intensities of these paramagnetic substances indicated that females possessed more of the components susceptible to electromagnetic waves than males, and the behavioral tests supported the differences between the sexes.
Project description:Animals are routinely colonized by microorganisms. Despite many studies documenting the microbial taxa associated with animals, the pattern and ecological determinants of among-animal variation in microbial communities are poorly understood. This study quantified the bacterial communities associated with natural populations of Drosophila melanogaster. Across five collections, each fly bore 16-78 OTUs, predominantly of the Acetobacteraceae, Lactobacillaceae, and Enterobacteriaceae. Positive relationships, mostly among related OTUs, dominated both the significant co-occurrences and co-association networks among bacteria, and OTUs with important network positions were generally of intermediate abundance and prevalence. The prevalence of most OTUs was well predicted by a neutral model suggesting that ecological drift and passive dispersal contribute significantly to microbiome composition. However, some Acetobacteraceae and Lactobacillaceae were present in more flies than predicted, indicative of superior among-fly dispersal. These taxa may be well-adapted to the Drosophila habitat from the perspective of dispersal as the principal benefit of the association to the microbial partners. Taken together, these patterns indicate that both stochastic processes and deterministic processes relating to the differential capacity for persistence in the host habitat and transmission between hosts contribute to bacterial community assembly in Drosophila melanogaster.
Project description:Peptidoglycans from bacterial cell walls trigger immune responses in insects and mammals. A peptidoglycan recognition protein, PGRP, has been cloned from moths as well as vertebrates and has been shown to participate in peptidoglycan-mediated activation of prophenoloxidase in the silk moth. Here we report that Drosophila expresses 12 PGRP genes, distributed in 8 chromosomal loci on the 3 major chromosomes. By analyzing cDNA clones and genomic databases, we grouped them into two classes: PGRP-SA, SB1, SB2, SC1A, SC1B, SC2, and SD, with short transcripts and short 5'-untranslated regions; and PGRP-LA, LB, LC, LD, and LE, with long transcripts and long 5'-untranslated regions. The predicted structures indicate that the first group encodes extracellular proteins and the second group, intracellular and membrane-spanning proteins. Most PGRP genes are expressed in all postembryonic stages. Peptidoglycan injections strongly induce five of the genes. Transcripts from the different PGRP genes were found in immune competent organs such as fat body, gut, and hemocytes. We demonstrate that at least PGRP-SA and SC1B can bind peptidoglycan, and a function in immunity is likely for this family.
Project description:This study was conducted to systematically assess and compare the fluctuations in crude protein (CP), crude fat (CF), and mineral content of staged (larva to adult) Drosophila (fruit fly) to that of a market-purchased black soldier fly larvae (BSFL) product. Results suggested that the relative CP content by dry matter ranged from 40.11% to 53.73% during Drosophila development, significantly higher (P < 0.001) than the 36.90% in BSFL. The relative CF was higher in BSFL (39.14%) compared to that of Drosophila (27.03-30.10%, P < 0.001). Although both insects contained sufficient levels of minerals to meet the dietary requirements of most animals, Drosophila overall possessed a lower content of iron, sodium, and calcium (P < 0.001) with a higher gross energy than the BSFL (P < 0.01). Comparative studies of amino acid (AA) and fatty acid (FA) profiles were further carried out among Drosophila larva (DL), pupa, and BSFL for their economic effectiveness. The AA spectra of insect larvae generally were similar except that the DL was higher in certain AA such as lysine (P < 0.01), which is an essential AA often critical for chicken growth. In contrast, the BSFL included more essential FA such as linoleic (C18:2, ω-6) and linolenic (C18:3, ω-3) acids (P < 0.01). To follow up, a husbandry trial was performed by allotting 120, 1-d-old, weight-matched, Arbor Acres broilers at random into treatment groups consisting of a low-protein diet background that contained ~20% CP supplemented with 4% BSFL and 4% or 8% DL. The average daily growth (ADG) and average daily feed intake (ADFI) of broilers, compared to the control low-protein diet, were significantly improved by feeding DL diets (P < 0.01), with better live and carcass weight and higher muscle pH (P < 0.001), which were positively correlated with the inclusion level of DL (P < 0.001). However, no differences between the control and 4% BSFL diet were observed for the performance parameters mentioned above. Moreover, all birds under our experimental setting exhibited a comparable feed conversion ratio (FCR) and were in a healthy status as indicated by the meat traits and hematological indexes within normal physiological ranges. Collectively, the findings in this study provide a theoretical basis for the further exploitation of Drosophila as potential dietary ingredients for feed production in order to meet the food challenge in the future.
Project description:The target of rapamycin (TOR) pathway is a major nutrient-sensing pathway that, when genetically downregulated, increases life span in evolutionarily diverse organisms including mammals. The central component of this pathway, TOR kinase, is the target of the inhibitory drug rapamycin, a highly specific and well-described drug approved for human use. We show here that feeding rapamycin to adult Drosophila produces the life span extension seen in some TOR mutants. Increase in life span by rapamycin was associated with increased resistance to both starvation and paraquat. Analysis of the underlying mechanisms revealed that rapamycin increased longevity specifically through the TORC1 branch of the TOR pathway, through alterations to both autophagy and translation. Rapamycin could increase life span of weak insulin/Igf signaling (IIS) pathway mutants and of flies with life span maximized by dietary restriction, indicating additional mechanisms.