Project description:Nuclear hormone receptors (NRs) are evolutionarily conserved ligand-dependent transcription factors. They are essential for human life, mediating the actions of lipophilic molecules, such as steroid hormones and metabolites of fatty acid, cholesterol, and external toxic compounds. The C2H2-type zinc finger proteins (ZNFs) form the largest family of the transcription factors in humans and are characterized by multiple, tandemly arranged zinc fingers. Many of the C2H2-type ZNFs are conserved throughout evolution, suggesting their involvement in preserved biological activities, such as general transcriptional regulation and development/differentiation of organs/tissues observed in the early embryonic phase. However, some C2H2-type ZNFs, such as those with the Krüppel-associated box (KRAB) domain, appeared relatively late in evolution and have significantly increased family members in mammals including humans, possibly modulating their complicated transcriptional network and/or supporting the morphological development/functions specific to them. Such evolutional characteristics of the C2H2-type ZNFs indicate that these molecules influence the NR functions conserved through evolution, whereas some also adjust them to meet with specific needs of higher organisms. We review the interaction between NRs and C2H2-type ZNFs by focusing on some of the latter molecules.
Project description:Nuclear receptors (NRs) are highly relevant drug targets in major indications such as oncologic, metabolic, reproductive, and immunologic diseases. However, currently, marketed drugs designed towards the orthosteric binding site of NRs often suffer from resistance mechanisms and poor selectivity. The identification of two superficial allosteric sites, activation function-2 (AF-2) and binding function-3 (BF-3), as novel drug targets sparked the development of inhibitors, while selectivity concerns due to a high conservation degree remained. To determine important pharmacophores and hydration sites among AF-2 and BF-3 of eight hormonal NRs, we systematically analyzed over 10 μ s of molecular dynamics simulations including simulations in explicit water and solvent mixtures. In addition, a library of over 300 allosteric inhibitors was evaluated by molecular docking. Based on our results, we suggest the BF-3 site to offer a higher potential for drug selectivity as opposed to the AF-2 site that is more conserved among the selected receptors. Detected similarities among the AF-2 sites of various NRs urge for a broader selectivity assessment in future studies. In combination with the Supplementary Material, this work provides a foundation to improve both selectivity and potency of allosteric inhibitors in a rational manner and increase the therapeutic applicability of this promising compound class.
Project description:Nuclear receptors are a family of ligand-activated, DNA sequence-specific transcription factors that regulate various aspects of animal development, cell proliferation, differentiation, and homeostasis. The physiological roles of nuclear receptors and their ligands have been intensively studied in cancer and metabolic syndrome. However, their role in kidney diseases is still evolving, despite their ligands being used clinically to treat renal diseases for decades. This review will discuss the progress of our understanding of the role of nuclear receptors and their ligands in kidney physiology with emphasis on their roles in treating glomerular disorders and podocyte injury repair responses.
Project description:Nuclear receptors (NRs) belong to a large protein superfamily which includes intracellular receptors for secreted hydrophobic signal molecules, such as steroid hormones and thyroid hormones. They regulate development and reproduction in metazoans by binding to the promoter region of their target gene to activate or repress mRNA synthesis. Isolation and characterization of NRs in the parasitic trematode Schistosoma mansoni identified two homologues of mammalian thyroid receptor (TR). This was the first known protostome exhibiting TR homologues. Three novel NRs each possess a novel set of two DNA binding domains (DBD) in tandem with a ligand binding domain (LBD) (2DBD-NRs) isolated in Schistosoma mansoni revealed a novel NR modular structure: A/B-DBD-DBD-hinge-LBD. Full length cDNA of several NRs have been isolated and studied in the parasitic trematodes S. mansoni, S. japonicum and in the cestode Echinococcus multilocularis. The genome of the blood flukes S. mansoni, S. japonicum and S. haematobium, the liver fluke Clonorchis sinensis and the cestode Echinococcus multilocularis have been sequenced. Study of the NR complement in parasitic Platyhelminths will help us to understand the role of NRs in regulation of their development and understand the evolution of NR in animals.
Project description:Nuclear receptors (NRs) belong to a large protein superfamily that are important transcriptional modulators in metazoans. Parasitic helminths include parasitic worms from the Lophotrochozoa (Platyhelminths) and Ecdysozoa (Nematoda). NRs in parasitic helminths diverged into two different evolutionary lineages. NRs in parasitic Platyhelminths have orthologues in Deuterostomes, in arthropods or both with a feature of extensive gene loss and gene duplication within different gene groups. NRs in parasitic Nematoda follow the nematode evolutionary lineage with a feature of multiple duplication of SupNRs and gene loss.
Project description:Many proteins possess intrinsic disorder (ID) and lack a rigid three-dimensional structure in at least part of their sequence. ID has been hypothesized to influence protein-protein and protein-ligand interactions. We calculated ID for nearly 400 vertebrate and invertebrate members of the biomedically important nuclear hormone receptor (NHR) superfamily, including all 48 known human NHRs. The predictions correctly identified regions in 20 of the 23 NHRs suggested as disordered based on published X-ray and NMR structures. Of the four major NHR domains (N-terminal domain, DNA-binding domain, D-domain, and ligand-binding domain), we found ID to be highest in the D-domain, a region of NHRs critical in DNA recognition and heterodimerization, coactivator/corepressor interactions and protein-protein interactions. ID in the D-domain and LBD was significantly higher in "hub" human NHRs that have 10 or more downstream proteins in their interaction networks compared to "non-hub" NHRs that interact with fewer than 10 downstream proteins. ID in the D-domain and LBD was also higher in classic, ligand-activated NHRs than in orphan, ligand-independent NHRs in human. The correlation between ID in human and mouse NHRs was high. Less correlation was found for ID between mammalian and non-mammalian vertebrate NHRs. For some invertebrate species, particularly sea squirts ( Ciona), marked differences were observed in ID between invertebrate NHRs and their vertebrate orthologs. Our results indicate that variability of ID within NHRs, particularly in the D-domain and LBD, is likely an important evolutionary force in shaping protein-protein interactions and NHR function. This information enables further understanding of these therapeutic targets.
Project description:Nuclear receptors (NRs) regulate transcription in response to ligand binding and NR modulation allows pharmacological control of gene expression. Although some NRs are relevant as drug targets, the NR1 family, which comprises 19 NRs binding to hormones, vitamins, and lipid metabolites, has only been partially explored from a translational perspective. To enable systematic target identification and validation for this protein family in phenotypic settings, we present an NR1 chemogenomic (CG) compound set optimized for complementary activity/selectivity profiles and chemical diversity. Based on broad profiling of candidates for specificity, toxicity, and off-target liabilities, sixty-nine comprehensively annotated NR1 agonists, antagonists and inverse agonists covering all members of the NR1 family and meeting potency and selectivity standards are included in the final NR1 CG set. Proof-of-concept application of this set reveals effects of NR1 members in autophagy, neuroinflammation and cancer cell death, and confirms the suitability of the set for target identification and validation.
Project description:Allosteric modulation of G protein-coupled receptors represent a promising mechanism of pharmacological intervention. Dramatic developments witnessed in the structural biology of membrane proteins continue to reveal that the binding sites of allosteric modulators are widely distributed, including along protein surfaces. Here we restrict consideration to intrahelical and intracellular sites together with allosteric conformational locks, and show that the protein mapping tools FTMap and FTSite identify 83% and 88% of such experimentally confirmed allosteric sites within the three strongest sites found. The methods were also able to find partially hidden allosteric sites that were not fully formed in X-ray structures crystallized in the absence of allosteric ligands. These results confirm that the intrahelical sites capable of binding druglike allosteric modulators are among the strongest ligand recognition sites in a large fraction of GPCRs and suggest that both FTMap and FTSite are useful tools for identifying allosteric sites and to aid in the design of such compounds in a range of GPCR targets.
Project description:G protein-coupled Receptors (GPCRs) play a central role in many physiological processes and, consequently, constitute important drug targets. In particular, the search for allosteric drugs has recently drawn attention, since they could be more selective and lead to fewer side effects. Accordingly, computational tools have been used to estimate the druggability of allosteric sites in these receptors. In spite of many successful results, the problem is still challenging, particularly the prediction of hydrophobic sites in the interface between the protein and the membrane. In this work, we propose a complementary approach, based on dynamical correlations. Our basic hypothesis was that allosteric sites are strongly coupled to regions of the receptor that undergo important conformational changes upon activation. Therefore, using ensembles of experimental structures, normal mode analysis and molecular dynamics simulations we calculated correlations between internal fluctuations of different sites and a collective variable describing the activation state of the receptor. Then, we ranked the sites based on the strength of their coupling to the collective dynamics. In the β2 adrenergic (β2AR), glucagon (GCGR) and M2 muscarinic receptors, this procedure allowed us to correctly identify known allosteric sites, suggesting it has predictive value. Our results indicate that this dynamics-based approach can be a complementary tool to the existing toolbox to characterize allosteric sites in GPCRs.
Project description:The long-sought entry receptors for rubella, sindbis and respiratory syncytial viruses (RV, SV and RSV), together with the missing measles virus (MV) receptor for infection of epithelial cells, were identified in 2011. These have been major developments in the field of virus entry. In addition, 2011 was rich in new information about the interactions of MV, RSV and phleboviruses with DC-SIGN during infection of dendritic cells, a crucial step allowing the virus to breach the epithelial barrier and gain access to the lymph nodes. This faciliates dissemination to susceptible tissues where it can develop a vigorous and sustained replication, to eventually target specific organs from which it can propagate into the environment and efficiently infect new hosts, closing the merry-go-round of the virus cycle.