Project description:An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.
Project description:Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.
Project description:Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.Electronic supplementary materialSupplementary material is available for this article at 10.12942/lrr-2005-11.
Project description:Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.Electronic supplementary materialSupplementary material is available for this article at 10.12942/lrr-2008-4.
Project description:While absolute pitch (AP)-the ability to name musical pitches globally and without reference-is rare in expert musicians, anecdotal evidence suggests that some musicians may better identify pitches played on their primary instrument than pitches played on other instruments. We call this phenomenon "instrument-specific absolute pitch" (ISAP). In this paper we present a theory of ISAP. Specifically, we offer the hypothesis that some expert musicians without global AP may be able to more accurately identify pitches played on their primary instrument(s), and we propose timbral cues and articulatory motor imagery as two underlying mechanisms. Depending on whether informative timbral cues arise from performer- or instrument-specific idiosyncrasies or from timbre-facilitated tonotopic representations, we predict that performance may be enhanced for notes played by oneself, notes played on one's own personal instrument, and/or notes played on any exemplar of one's own instrument type. Sounds of one's primary instrument may moreover activate kinesthetic memory and motor imagery, aiding pitch identification. In order to demonstrate how our theory can be tested, we report the methodology and analysis of two exemplary experiments conducted on two case-study participants who are professional oboists. The aim of the first experiment was to determine whether the oboists demonstrated ISAP ability, while the purpose of the second experiment was to provide a preliminary investigation of the underlying mechanisms. The results of the first experiment revealed that only one of the two oboists showed an advantage for identifying oboe tones over piano tones. For this oboist demonstrating ISAP, the second experiment demonstrated that pitch-naming accuracy decreased and variance around the correct pitch value increased as an effect of transposition and motor interference, but not of instrument or performer. These preliminary data suggest that some musicians possess ISAP while others do not. Timbral cues and motor imagery may both play roles in the acquisition of this ability. Based on our case study findings, we provide methodological considerations and recommendations for future empirical testing of our theory of ISAP.
Project description:The cosmological constant, also known as dark energy, was believed to be caused by vacuum fluctuations, but naive calculations give results in stark disagreement with fact. In the Casimir effect, vacuum fluctuations cause forces in dielectric media, which is very well described by Lifshitz theory. Recently, using the analogy between geometries and media, a cosmological constant of the correct order of magnitude was calculated with Lifshitz theory (Leonhardt 2019 Ann. Phys. (New York) 411, 167973. (doi:10.1016/j.aop.2019.167973)). This paper discusses the empirical evidence and the ideas behind the Lifshitz theory of the cosmological constant without requiring prior knowledge of cosmology and quantum field theory. This article is part of a discussion meeting issue 'The next generation of analogue gravity experiments'.
Project description:Although unintended acceleration caused by pedal misapplication is a cause of traffic accidents, fatal accidents may be avoided if drivers realize their error immediately and quickly correct how they are stepping on the pedal. This correction behavior may decline with age because the rate of fatal accidents is fairly higher for older adults than for younger adults. To investigate this possibility, the present study recruited older adults (n = 40, age range = 67-81 years) as well as younger adults (n = 40, age range = 18-32 years). In this study, they performed a pedal stepping task during which they were required to stop the simulated vehicle as quickly as possible when a red signal was presented on a monitor. During most trials, the vehicle decelerated/stopped when the brake pedal was applied in a normal manner. In a few trials, however, stepping on the brake pedal resulted in sudden acceleration of the vehicle (i.e., the occurrence of the unintended acceleration); when this occurred, the participants had to release the pedal and re-step on another pedal to decelerate/stop the vehicle as quickly as possible. We focused on the age-related differences of the reaction latencies during three time periods: from the appearance of the red signal on the screen until stepping on the pedal (Period 1), from stepping on the pedal until the release of the pedal (Period 2), and from the release of the pedal until re-stepping of another pedal (Period 3). The results showed that there was no age-related difference in the latency of Period 1, p = .771, whereas those of Periods 2 and 3 were longer for the older adults (ps < .001). The results suggest that there are age-related differences in error detection and correction abilities under unintended situations with foot pedal manipulation.
Project description:Absolute binding free-energy (ABFE) calculations are playing an increasing role in drug design, especially as they can be performed on a range of disparate compounds and direct comparisons between them can be made. It is, however, especially important to ensure that they are as accurate as possible, as unlike relative binding free-energy (RBFE) calculations, one does not benefit as much from a cancellation of errors during the calculations. In most modern implementations of ABFE calculations, a particle mesh Ewald scheme is typically used to treat the electrostatic contribution to the free energy. A central requirement of such schemes is that the box preserves neutrality throughout the calculation. There are many ways to deal with this problem that have been discussed over the years ranging from a neutralizing plasma with a post hoc correction term through to a simple co-alchemical ion within the same box. The post hoc correction approach is the most widespread. However, the vast majority of these studies have been applied to a soluble protein in a homogeneous solvent (water or salt solution). In this work, we explore which of the more common approaches would be the most suitable for a simulation box with a lipid bilayer within it. We further develop the idea of the so-called Rocklin correction for lipid-bilayer systems and show how such a correction could work. However, we also show that it will be difficult to make this generalizable in a practical way and thus we conclude that the use of a "co-alchemical ion" is the most useful approach for simulations involving lipid membrane systems.
Project description:The ability to judge the temporal alignment of visual and auditory information is a prerequisite for multisensory integration and segregation. However, each temporal measurement is subject to error. Thus, when judging whether a visual and auditory stimulus were presented simultaneously, observers must rely on a subjective decision boundary to distinguish between measurement error and truly misaligned audiovisual signals. Here, we tested whether these decision boundaries are relaxed with increasing temporal sensory uncertainty, i.e., whether participants make the same type of adjustment an ideal observer would make. Participants judged the simultaneity of audiovisual stimulus pairs with varying temporal offset, while being immersed in different virtual environments. To obtain estimates of participants' temporal sensory uncertainty and simultaneity criteria in each environment, an independent-channels model was fitted to their simultaneity judgments. In two experiments, participants' simultaneity decision boundaries were predicted by their temporal uncertainty, which varied unsystematically with the environment. Hence, observers used a flexibly updated estimate of their own audiovisual temporal uncertainty to establish subjective criteria of simultaneity. This finding implies that, under typical circumstances, audiovisual simultaneity windows reflect an observer's cross-modal temporal uncertainty.