Project description:Story understanding involves many perceptual and cognitive subprocesses, from perceiving individual words, to parsing sentences, to understanding the relationships among the story characters. We present an integrated computational model of reading that incorporates these and additional subprocesses, simultaneously discovering their fMRI signatures. Our model predicts the fMRI activity associated with reading arbitrary text passages, well enough to distinguish which of two story segments is being read with 74% accuracy. This approach is the first to simultaneously track diverse reading subprocesses during complex story processing and predict the detailed neural representation of diverse story features, ranging from visual word properties to the mention of different story characters and different actions they perform. We construct brain representation maps that replicate many results from a wide range of classical studies that focus each on one aspect of language processing and offer new insights on which type of information is processed by different areas involved in language processing. Additionally, this approach is promising for studying individual differences: it can be used to create single subject maps that may potentially be used to measure reading comprehension and diagnose reading disorders.
Project description:The learning environment in which material is acquired may produce differences in delayed recall and in the elements that individuals focus on. These differences may appear even during development. In the present study, we compared three different learning environments in 450 normally developing 7-year-old children subdivided into three groups according to the type of learning environment. Specifically, children were asked to learn the same material shown in three different learning environments: reading illustrated books (TB); interacting with the same text displayed on a PC monitor and enriched with interactive activities (PC-IA); reading the same text on a PC monitor but not enriched with interactive narratives (PC-NoIA). Our results demonstrated that TB and PC-NoIA elicited better verbal memory recall. In contrast, PC-IA and PC-NoIA produced higher scores for visuo-spatial memory, enhancing memory for spatial relations, positions and colors with respect to TB. Interestingly, only TB seemed to produce a deeper comprehension of the story's moral. Our results indicated that PC-IA offered a different type of learning that favored visual details. In this sense, interactive activities demonstrate certain limitations, probably due to information overabundance, emotional mobilization, emphasis on images and effort exerted in interactive activities. Thus, interactive activities, although entertaining, act as disruptive elements which interfere with verbal memory and deep moral comprehension.
Project description:Differences in people's beliefs can substantially impact their interpretation of a series of events. In this functional MRI study, we manipulated subjects' beliefs, leading two groups of subjects to interpret the same narrative in different ways. We found that responses in higher-order brain areas-including the default-mode network, language areas, and subsets of the mirror neuron system-tended to be similar among people who shared the same interpretation, but different from those of people with an opposing interpretation. Furthermore, the difference in neural responses between the two groups at each moment was correlated with the magnitude of the difference in the interpretation of the narrative. This study demonstrates that brain responses to the same event tend to cluster together among people who share the same views.
Project description:The ability to perceive social intentions from people's eyes is present from an early age, yet little is known about whether this skill is fully developed in childhood or that subtle changes may still occur across adolescence. This fMRI study investigated the ability to read mental states by using an adapted version of the Reading the Mind in the Eyes task within adolescents (aged 12-19 years) over a 2-year test-retest interval. This longitudinal setup provides the opportunity to study both stability over time as well as age-related changes. The behavioral results showed that participants who performed well in the mental state condition at the first measurement also performed well at the second measurement. fMRI results revealed positive test-retest correlations of neural activity in the right superior temporal sulcus and right inferior frontal gyrus for the contrast mental state > control, suggesting stability within individuals over time. Besides stability of activation, dorsal medial prefrontal cortex showed a dip in mid-adolescence for the mental state > control condition and right inferior frontal gyrus decreased linearly with age for the mental state > control condition. These findings underline changes in the slope of the developmental pattern depending on age, even in the existence of relatively stable activation in the social brain network.
Project description:We examined the role of mental imagery skills on story comprehension in 150 fifth graders (10- to 12-year-olds), when reading a narrative book chapter with alternating words and pictures (i.e., text blocks were alternated by one- or two-page picture spreads). A parallel group design was used, in which we compared our experimental book version, in which pictures were used to replace parts of the corresponding text, to two control versions, i.e., a text-only version and a version with the full story text and all pictures. Analyses showed an interaction between mental imagery and book version: children with higher mental imagery skills outperformed children with lower mental imagery skills on story comprehension after reading the experimental narrative. This was not the case for both control conditions. This suggests that children's mental imagery skills significantly contributed to the mental representation of the story that they created, by successfully integrating information from both words and pictures. The results emphasize the importance of mental imagery skills for explaining individual variability in reading development. Implications for educational practice are that we should find effective ways to instruct children how to "read" pictures and how to develop and use their mental imagery skills. This will probably contribute to their mental models and therefore their story comprehension.
Project description:Working memory is linked to the functions of the frontal areas, in which neural activity is mediated by dopaminergic and serotonergic tones. However, there is no consensus regarding how the dopaminergic and serotonergic systems influence working memory subprocesses. The present study used an imaging genetics approach to examine the interaction between neurochemical functions and working memory performance. We focused on functional polymorphisms of the catechol-O-methyltransferase (COMT) Val(158)Met and serotonin 2A receptor (HTR2A) -1438G/A genes, and devised a delayed recognition task to isolate the encoding, retention, and retrieval processes for visual information. The COMT genotypes affected recognition accuracy, whereas the HTR2A genotypes were associated with recognition response times. Activations specifically related to working memory were found in the right frontal and parietal areas, such as the middle frontal gyrus (MFG), inferior frontal gyrus (IFG), anterior cingulate cortex (ACC), and inferior parietal lobule (IPL). MFG and ACC/IPL activations were sensitive to differences between the COMT genotypes and between the HTR2A genotypes, respectively. Structural equation modeling demonstrated that stronger connectivity in the ACC-MFG and ACC-IFG networks is related to better task performance. The behavioral and fMRI results suggest that the dopaminergic and serotonergic systems play different roles in the working memory subprocesses and modulate closer cooperation between lateral and medial frontal activations.
Project description:Wheat is a major food crop worldwide. The plant architecture is a complex trait mostly influenced by plant height, tiller number, and leaf morphology. Plant height plays a crucial role in lodging and thus affects yield and grain quality. In this study, a wheat population was genotyped by using Illumina iSelect 90K single nucleotide polymorphism (SNP) assay and finally 22,905 high-quality SNPs were used to perform a genome-wide association study (GWAS) for plant architectural traits employing four multi-locus GWAS (ML-GWAS) and three single-locus GWAS (SL-GWAS) models. As a result, 174 and 97 significant SNPs controlling plant architectural traits were detected by ML-GWAS and SL-GWAS methods, respectively. Among these SNP makers, 43 SNPs were consistently detected, including seven across multiple environments and 36 across multiple methods. Interestingly, five SNPs (Kukri_c34553_89, RAC875_c8121_1490, wsnp_Ex_rep_c66315_64480362, Ku_c5191_340, and tplb0049a09_1302) consistently detected across multiple environments and methods, played a role in modulating both plant height and flag leaf length. Furthermore, candidate SNPs (BS00068592_51, Kukri_c4750_452 and BS00022127_51) constantly repeated in different years and methods associated with flag leaf width and number of tillers. We also detected several SNPs (Jagger_c6772_80, RAC875_c8121_1490, BS00089954_51, Excalibur_01167_1207, and Ku_c5191_340) having common associations with more than one trait across multiple environments. By further appraising these GWAS methods, the pLARmEB and FarmCPU models outperformed in SNP detection compared to the other ML-GWAS and SL-GWAS methods, respectively. Totally, 152 candidate genes were found to be likely involved in plant growth and development. These finding will be helpful for better understanding of the genetic mechanism of architectural traits in wheat.
Project description:Previous research showed that story illustrations fail to enhance young preschoolers' memories when they accompany a pre-recorded story (e.g., Greenhoot and Semb, 2008). In this study we tested whether young children might benefit from illustrations in a more interactive story-reading context. For instance, illustrations might influence parent-child reading interactions, and thus children's story comprehension and recall. Twenty-six 3.5- to 4.5-year-olds and their primary caregivers were randomly assigned to an Illustrated or Non-Illustrated story-reading condition, and parents were instructed to "read or tell the story" as they normally would read with their child. Children recalled the story after a distracter and again after 1 week. Analyses of the story-reading interactions showed that the illustrations prompted more interactive story reading and more parent and child behaviors known to predict improved literacy outcomes. Furthermore, in the first memory interview, children in the Illustrated condition recalled more story events than those in the Non-Illustrated condition. Story reading measures predicted recall, but did not completely account for picture effects. These results suggest that illustrations enhance young preschoolers' story recall in an interactive story reading context, perhaps because the joint attention established in this context supports children's processing of the illustrations.
Project description:Reading is one of the most popular leisure activities and it is routinely performed by most individuals even in old age. Successful reading enables older people to master and actively participate in everyday life and maintain functional independence. Yet, reading comprises a multitude of subprocesses and it is undoubtedly one of the most complex accomplishments of the human brain. Not surprisingly, findings of age-related effects on word recognition and reading have been partly contradictory and are often confined to only one of four central reading subprocesses, i.e., sublexical, orthographic, phonological and lexico-semantic processing. The aim of the present study was therefore to systematically investigate the impact of age on each of these subprocesses. A total of 1,807 participants (young, N = 384; old, N = 1,423) performed four decision tasks specifically designed to tap one of the subprocesses. To account for the behavioral heterogeneity in older adults, this subsample was split into high and low performing readers. Data were analyzed using a hierarchical diffusion modeling approach, which provides more information than standard response time/accuracy analyses. Taking into account incorrect and correct response times, their distributions and accuracy data, hierarchical diffusion modeling allowed us to differentiate between age-related changes in decision threshold, non-decision time and the speed of information uptake. We observed longer non-decision times for older adults and a more conservative decision threshold. More importantly, high-performing older readers outperformed younger adults at the speed of information uptake in orthographic and lexico-semantic processing, whereas a general age-disadvantage was observed at the sublexical and phonological levels. Low-performing older readers were slowest in information uptake in all four subprocesses. Discussing these results in terms of computational models of word recognition, we propose age-related disadvantages for older readers to be caused by inefficiencies in temporal sampling and activation and/or inhibition processes.