Correction: Neutral and Adaptive Drivers of Microgeographic Genetic Divergence within Continuous Populations: The Case of the Neotropical Tree Eperua falcata (Aubl.).
Correction: Neutral and Adaptive Drivers of Microgeographic Genetic Divergence within Continuous Populations: The Case of the Neotropical Tree Eperua falcata (Aubl.).
Project description:BackgroundIn wild plant populations, genetic divergence within continuous stands is common, sometimes at very short geographical scales. While restrictions to gene flow combined with local inbreeding and genetic drift may cause neutral differentiation among subpopulations, microgeographical variations in environmental conditions can drive adaptive divergence through natural selection at some targeted loci. Such phenomena have recurrently been observed in plant populations occurring across sharp environmental boundaries, but the interplay between selective processes and neutral genetic divergence has seldom been studied.MethodsWe assessed the extent of within-stand neutral and environmentally-driven divergence in the Neotropical tree Eperua falcate Aubl. (Fabaceae) through a genome-scan approach. Populations of this species grow in dense stands that cross the boundaries between starkly contrasting habitats. Within-stand phenotypic and candidate-gene divergence have already been proven, making this species a suitable model for the study of genome-wide microgeographic divergence. Thirty trees from each of two habitats (seasonally flooded swamps and well-drained plateaus) in two separate populations were genotyped using thousands of AFLPs markers. To avoid genotyping errors and increase marker reliability, each sample was genotyped twice and submitted to a rigorous procedure for data cleaning, which resulted in 1196 reliable and reproducible markers.ResultsDespite the short spatial distances, we detected within-populations genetic divergence, probably caused by neutral processes, such as restrictions in gene flow. Moreover, habitat-structured subpopulations belonging to otherwise continuous stands also diverge in relation to environmental variability and habitat patchiness: we detected convincing evidence of divergent selection at the genome-wide level and for a fraction of the analyzed loci (comprised between 0.25% and 1.6%). Simulations showed that the levels of differentiation for these outliers are compatible with scenarios of strong divergent selection.
Project description:Background and aimsIn eastern Neotropical South America, the Cerrado, a large savanna vegetation, and the Atlantic Forest harbour high biodiversity levels, and their habitats are rather different from each other. The biomes have intrinsic evolutionary relationships, with high lineage exchange that can be attributed, in part, to a large contact zone between them. The genomic study of ecotypes, i.e. populations adapted to divergent habitats, can be a model to study the genomic signatures of ecological divergence. Here, we investigated two ecotypes of the tree Plathymenia reticulata, one from the Cerrado and the other from the Atlantic Forest, which have a hybrid zone in the ecotonal zone of Atlantic Forest-Cerrado.MethodsThe ecotypes were sampled in the two biomes and their ecotone. The evolutionary history of the divergence of the species was analysed with double-digest restriction site-associated DNA sequencing. The genetic structure and the genotypic composition of the hybrid zone were determined. Genotype-association analyses were performed, and the loci under putative selection and their functions were investigated.Key resultsHigh divergence between the two ecotypes was found, and only early-generation hybrids were found in the hybrid zone, suggesting a partial reproductive barrier. Ancient introgression between the Cerrado and Atlantic Forest was not detected. The soil and climate were associated with genetic divergence in Plathymenia ecotypes and outlier loci were found to be associated with the stress response, with stomatal and root development and with reproduction.ConclusionsThe high genomic, ecological and morphophysiological divergence between ecotypes, coupled with partial reproductive isolation, indicate that the ecotypes represent two species and should be managed as different evolutionary lineages. We advise that the forest species should be re-evaluated and restated as vulnerable. Our results provide insights into the genomic mechanisms underlying the diversification of species across savanna and forest habitats and the evolutionary forces acting in the species diversification in the Neotropics.
Project description:Plants are one of the most vulnerable groups to fragmentation and habitat loss, that may affect community richness, abundance, functional traits, and genetic diversity. Here, we address the effects of landscape features on adaptive quantitative traits and evolutionary potential, and on neutral genetic diversity in populations of the Neotropical savanna tree Caryocar brasiliense. We sampled adults and juveniles in 10 savanna remnants within five landscapes. To obtain neutral genetic variation, we genotyped all individuals from each site using nine microsatellite loci. For adaptive traits we measured seed size and mass and grown seeds in nursery in completely randomized experimental design. We obtained mean, additive genetic variance (V a ) and coefficient of variation (CV a %), which measures evolvability, for 17 traits in seedlings. We found that landscapes with higher compositional heterogeneity (SHDI) had lower evolutionary potential (CV a %) in leaf length (LL) and lower aboveground dry mass (ADM) genetic differentiation (Q ST ). We also found that landscapes with higher SHDI had higher genetic diversity (He) and allelic richness (AR) in adults, and lower genetic differentiation (F ST ). In juveniles, SHDI was also positively related to AR. These results are most likely due to longer dispersal distance of pollen in landscapes with lower density of flowering individuals. Agricultural landscapes with low quality mosaic may be more stressful for plant species, due to the lower habitat cover (%), higher cover of monocropping (%) and other land covers, and edge effects. However, in landscapes with higher SHDI with high quality mosaic, forest nearby savanna habitat and the other environments may facilitate the movement or provide additional habitat and resources for seed disperses and pollinators, increasing gene flow and genetic diversity. Finally, despite the very recent agriculture expansion in Central Brazil, we found no time lag in response to habitat loss, because both adults and juveniles were affected by landscape changes.
Project description:Microgeographic adaptation is a fundamental driving force of evolution, but the underlying causes remain undetermined. Here, the phenotypic, genomic and transcriptomic variations of two wild barley populations collected from sharply divergent and adjacent micro-geographic sites to identify candidate genes associated with edaphic local adaptation are investigated. Common garden and reciprocal transplant studies show that large phenotypic differentiation and local adaptation to soils occur between these populations. Genetic, phylogenetic and admixture analyses based on population resequencing show that significant genetic divergences occur between basalt and chalk populations. These divergences are consistent with the phenotypic variations observed in the field. Genome sweep analyses reveal 162.7 Mb of selected regions driven by edaphic local adaptation, in which 445 genes identified, including genes associated with root architecture, metal transport/detoxification, and ABA signaling. When the phenotypic, genomic and transcriptomic data are combined, HvMOR, encoding an LBD transcription factor, is determined to be the vital candidate for regulating the root architecture to adapt to edaphic conditions at the microgeographic scale. This study provides new insights into the genetic basis of edaphic adaptation and demonstrates that edaphic factors may contribute to the evolution and speciation of barley.
Project description:A predator's functional response determines predator-prey interactions by describing the relationship between the number of prey available and the number eaten. Its shape and parameters fundamentally govern the dynamic equilibrium of predator-prey interactions and their joint abundances. Yet, estimates of these key parameters generally assume stasis in space and time and ignore the potential for local adaptation to alter feeding responses and the stability of trophic dynamics. Here, we evaluate if functional responses diverge among populations of spotted salamander (Ambystoma maculatum) larvae that face antagonistic selection on feeding strategies based on their own risk of predation. Common garden experiments revealed that spotted salamander from ponds with varying predation risks differed in their functional responses, suggesting an evolutionary response. Applying mechanistic equations, we discovered that the combined changes in attack rates, handling times and shape of the functional response enhanced feeding rate in environments with high densities of gape-limited predators. We suggest how these parameter changes could alter community equilibria and other emergent properties of food webs. Community ecologists might often need to consider how local evolution at fine scales alters key relationships in ways that alter local diversity patterns, food web dynamics, resource gradients and community responses to disturbance.
Project description:Abiotic and biotic conditions often vary continuously across the landscape, imposing divergent selection on local populations. We used a provenance trial approach to examine microgeographic variation in local adaptation in Boechera stricta (Brassicaceae), a perennial forb native to the Rocky Mountains. In montane ecosystems, environmental conditions change considerably over short spatial scales, such that neighboring populations can be subject to different selective pressures. Using accessions from southern (Colorado) and northern (Idaho) populations, we characterized spatial variation in genetic similarity via microsatellite markers. We then transplanted genotypes from multiple local populations into common gardens in both regions. Continuous variation in local adaptation emerged for several components of fitness. In Idaho, genotypes from warmer environments (low-elevation or south-facing sites) were poorly adapted to the north-facing garden. In high- and low-elevation Colorado gardens, susceptibility to insect herbivory increased with source elevation. In the high-elevation Colorado garden, germination success peaked for genotypes that evolved at elevations similar to that of the garden and decreased for genotypes from higher and lower elevations. We also found evidence for local maladaptation in survival and fecundity components of fitness in the low-elevation Colorado garden. This approach is a first step in predicting how global change could affect evolutionary dynamics.
Project description:We investigated the potential mechanisms driving habitat-linked genetic divergence within a bird species endemic to a single 250-km2 island. The island scrub-jay (Aphelocoma insularis) exhibits microgeographic divergence in bill morphology across pine-oak ecotones on Santa Cruz Island, California (USA), similar to adaptive differences described in mainland congeners over much larger geographic scales. To test whether individuals exhibit genetic differentiation related to habitat type and divergence in bill length, we genotyped over 3000 single nucleotide polymorphisms in 123 adult island scrub-jay males from across Santa Cruz Island using restriction site-associated DNA sequencing. Neutral landscape genomic analyses revealed that genome-wide genetic differentiation was primarily related to geographic distance and differences in habitat composition. We also found 168 putatively adaptive loci associated with habitat type using multivariate redundancy analysis while controlling for spatial effects. Finally, two genome-wide association analyses revealed a polygenic basis to variation in bill length with multiple loci detected in or near genes known to affect bill morphology in other birds. Our findings support the hypothesis that divergent selection at microgeographic scales can cause adaptive divergence in the presence of ongoing gene flow.
Project description:Neotropical peatlands emit large amounts of methane (CH4 ) from the soil surface, but fluxes from tree stems in these ecosystems are unknown. In this study we investigated CH4 emissions from five tree species in two forest types common to neotropical lowland peatlands in Panama. Methane from tree stems accounted for up to 30% of net ecosystem CH4 emissions. Peak CH4 fluxes were greater during the wet season when the water table was high and temperatures were lower. Emissions were greatest from the hardwood tree Campnosperma panamensis, but most species acted as emitters, with emissions declining exponentially with height along the stem for all species. Overall, species identity, stem diameter, water level, soil temperature and soil CH4 fluxes explained 54% of the variance in stem CH4 emissions from individual trees. On the landscape level, On the landscape level, the high emissions from C. panamensis forests resulted in that they emitted at 340 kg CH4 d-1 during flooded periods despite their substantially lower areal cover. We conclude that emission from tree stems is an important emission pathway for CH4 flux from Neotropical peatlands, and that these emissions vary strongly with season and forest type.
Project description:Sea-level rise will result in increased salinization of coastal areas. Soil salinity is a major abiotic stress that reduces plant growth, yet tolerance to salinity varies across environmental conditions, habitats and species. To determine salinity tolerance of 26 common tropical tree species from Panama, we measured growth, gas exchange and mortality of 3-month-old seedlings subjected to weekly irrigation treatments using five seawater solutions (0 % = control, 20, 40, 60 and 90 % V/V of seawater) for ~2 months. In general, species from coastal areas were more tolerant to increased seawater concentration than inland species. Coastal species such as Pithecellobium unguis-cati, Mora oleifera, Terminalia cattapa and Thespesia populnea maintained growth rates close to those of controls at 90 % seawater. In contrast, inland species such as Minquartia guainensis, Apeiba membranacea, Ormosia coccinea and Ochroma pyramidale showed strong reductions in growth rates and high mortality. Plant height and leaf production also differed greatly between the two groups of plants. Furthermore, measurements of gas exchange parameters, i.e. stomatal conductance and maximum photosynthetic rate, were consistent with the contrasting growth responses of coastal and inland species. Our research reveals a great degree of variation in salinity tolerance among tropical tree species and demonstrates a close relationship between species habitat and the ability to thrive under increasing salt concentration in the soil, with coastal species being better adapted to withstand increased soil salinity than non-costal species.
Project description:We explore the potential factors that affect clutch initiation in four Neotropical large raptors (Harpy eagle-HE, Crested eagle-CE, Ornate hawk-eagle-OHE, and Black hawk-eagle-BHE) by analyzing 414 clutch events mostly obtained from captive individuals. Differences in how clutch initiation is associated with changes in photoperiod were found between HE and both hawk-eagles, and between CE and BHE. Changes in temperature at the time of clutch initiation only differed between HE and OHE, whereas changes in precipitation varied between BHE and all other species. Principal Component Analysis of these environmental cues showed that ellipses in the dataset of each species overlap, but only ellipses from CE and OHE had the same variation trends. This means that although these species live under similar ecological conditions, they exhibit three different patterns of response to environmental cues. Apparently, these patterns are not associated with phylogenetic relatedness because species belonging to the same clade do not show the same response pattern. Diet diversity analysis revealed that HE has the least varied diet, and CE and OHE the most varied diet. The fact that species who fit the same reproductive timing response to environmental cues show similar diets leads us to hypothesize that breeding in these eagles was most likely shaped by food availability.