Project description:By conferring systemic protection and durable benefits, cancer immunotherapies are emerging as long-term solutions for cancer treatment. One such approach that is currently undergoing clinical testing is a therapeutic anti-cancer vaccine that uses two different viruses expressing the same tumor antigen to prime and boost anti-tumor immunity. By providing the additional advantage of directly killing cancer cells, oncolytic viruses (OVs) constitute ideal platforms for such treatment strategy. However, given that the targeted tumor antigen is encoded into the viral genomes, its production requires robust infection and therefore, the vaccination efficiency partially depends on the unpredictable and highly variable intrinsic sensitivity of each tumor to OV infection. In this study, we demonstrate that anti-cancer vaccination using OVs (Adenovirus (Ad), Maraba virus (MRB), Vesicular stomatitis virus (VSV) and Vaccinia virus (VV)) co-administered with antigenic peptides is as efficient as antigen-engineered OVs and does not depend on viral replication. Our strategy is particularly attractive for personalized anti-cancer vaccines targeting patient-specific mutations. We suggest that the use of OVs as adjuvant platforms for therapeutic anti-cancer vaccination warrants testing for cancer treatment.
Project description:In the past two decades, more than 20 viruses with selective tropism for tumor cells have been developed as oncolytic viruses (OVs) for treatments of a variety of malignancies. Of these viruses, eleven have been tested in human ovarian cancer models in preclinical studies. So far, nine phase I or II clinical trials have been conducted or initiated using four different types of OVs in patients with recurrent ovarian cancers. In this article, we summarize the different OVs that are being assessed as therapeutics for ovarian cancer. We also present an overview of recent advances in identification of key genetic or immune-response pathways involved in tumorigenesis of ovarian cancer, which provides a better understanding of the tumor specificities and oncolytic properties of OVs. In addition, we discuss how next-generation OVs could be genetically modified or integrated into multimodality regimens to improve clinical outcomes based on recent advances in ovarian cancer biology.
Project description:Within the past decade, many oncolytic viruses (OVs) have been studied as potential treatments for pancreatic cancer and some of these are currently under clinical trials. The applicability of certain OVs, such as adenoviruses, herpesviruses and reoviruses, for the treatment of pancreatic cancer has been intensively studied for several years, whereas the applicability of other more recently investigated OVs, such as poxviruses and parvoviruses, is only starting to be determined. At the same time, studies have identified key characteristics of pancreatic cancer biology that provide a better understanding of the important factors or pathways involved in this disease. This review aims to summarise the different replication-competent OVs proposed as therapeutics for pancreatic cancer. It also focuses on the unique biology of these viruses that makes them exciting candidate virotherapies for pancreatic cancer and discusses how they could be genetically manipulated or combined with other drugs to improve their efficacy based on what is currently known about the molecular biology of pancreatic cancer.
Project description:Breast cancer continues to be a leading cause of mortality among women. While at an early stage, localized breast cancer is easily treated; however, advanced stages of disease continue to carry a high mortality rate. The discrepancy in treatment success highlights that current treatments are insufficient to treat advanced-stage breast cancer. As new and improved treatments have been sought, one therapeutic approach has gained considerable attention. Oncolytic viruses are uniquely capable of targeting cancer cells through intrinsic or engineered means. They come in many forms, mainly from four major virus groups as defined by the Baltimore classification system. These vectors can target and kill cancer cells, and even stimulate immunotherapeutic effects in patients. This review discusses not only individual oncolytic viruses pursued in the context of breast cancer treatment but also the emergence of combination therapies with current or new therapies, which has become a particularly promising strategy for treatment of breast cancer. Overall, oncolytic virotherapy is a promising strategy for increased treatment efficacy for advanced breast cancer and consequently provides a unique platform for personalized treatments in patients.
Project description:Oncolytic viruses are a new class of therapeutics which are largely in the experimental stage, with just one virus approved by the FDA thus far. While the concept of oncolytic virotherapy is not new, advancements in the fields of molecular biology and virology have renewed the interest in using viruses as oncolytic agents. Backed by robust preclinical data, many oncolytic viruses have entered clinical trials. Oncolytic viruses that have completed some levels of clinical trials or are currently undergoing clinical trials are mostly genetically engineered viruses, with the exception of some RNA viruses. Reolysin, an unmodified RNA virus is clinically the most advanced oncolytic RNA virus that has completed different phases of clinical trials. Other oncolytic viruses that have been studied in clinical trials are mostly DNA viruses that belong to one of the three families: herpesviridae, poxviridae or adenoviridae. In this review work we discuss recent clinical studies with oncolytic viruses, especially herpesvirus, poxvirus, adenovirus and reovirus. In summary, the oncolytic viruses tested so far are well tolerated, even in immune-suppressed patients. For most oncolytic viruses, mild and acceptable toxicities are seen at the currently defined highest feasible doses. However, anti-tumor efficacies of oncolytic viruses have been modest, especially when used as monotherapy. Therefore, the potency of oncolytic viruses needs to be enhanced for more oncolytic viruses to hit the clinic. Aiming to achieve higher therapeutic benefits, oncolytic viruses are currently being studied in combination with other therapies. Here we discuss the currently available clinical data on oncolytic viruses, either as monotherapy or in combination with other treatments.
Project description:For decades, effective cancer gene therapy has been a tantalising prospect; for a therapeutic modality potentially able to elicit highly effective and selective responses, definitive efficacy outcomes have often seemed out of reach. However, steady progress in vector development and accumulated experience from previous clinical studies has finally led the field to its first licensed therapy. Following a pivotal phase III trial, Imlygic (talimogene laherparepvec/T-Vec) received US approval as a treatment for cutaneous and subcutaneous melanoma in October 2015, followed several weeks later by its European authorisation. These represent the first approvals for an oncolytic virotherapy. Imlygic is an advanced-generation herpesvirus-based vector optimised for oncolytic and immunomodulatory activities. Many other oncolytic agents currently remain in development, providing hope that current success will be followed by other diverse vectors that may ultimately come to constitute a new class of clinical anti-cancer agents. In this review, we discuss some of the key oncolytic viral agents developed in the adenovirus and herpesvirus classes, and the prospects for further enhancing their efficacy by combining them with novel immunotherapeutic approaches.
Project description:Lung cancer is one of the malignant tumors that seriously threaten human health worldwide, while the covid-19 virus has become people's nightmare after the coronavirus pandemic. There are too many similarities between cancer cells and viruses, one of the most significant is that both of them are our enemies. The strategy to take the advantage of the virus to beat cancer cells is called Oncolytic virotherapy. When immunotherapy represented by immune checkpoint inhibitors has made remarkable breakthroughs in the clinical practice of lung cancer, the induction of antitumor immunity from immune cells gradually becomes a rapidly developing and promising strategy of cancer therapy. Oncolytic virotherapy is based on the same mechanisms that selectively kill tumor cells and induce systemic anti-tumor immunity, but still has a long way to go before it becomes a standard treatment for lung cancer. This article provides a comprehensive review of the latest progress in oncolytic virotherapy for lung cancer, including the specific mechanism of oncolytic virus therapy and the main types of oncolytic viruses, and the combination of oncolytic virotherapy and existing standard treatments. It aims to provide new insights and ideas on oncolytic virotherapy for lung cancer.
Project description:MV-NIS is an engineered measles virus that is selectively destructive to myeloma plasma cells and can be monitored by noninvasive radioiodine imaging of NIS gene expression. Two measles-seronegative patients with relapsing drug-refractory myeloma and multiple glucose-avid plasmacytomas were treated by intravenous infusion of 10(11) TCID50 (50% tissue culture infectious dose) infectious units of MV-NIS. Both patients responded to therapy with M protein reduction and resolution of bone marrow plasmacytosis. Further, one patient experienced durable complete remission at all disease sites. Tumor targeting was clearly documented by NIS-mediated radioiodine uptake in virus-infected plasmacytomas. Toxicities resolved within the first week after therapy. Oncolytic viruses offer a promising new modality for the targeted infection and destruction of disseminated cancer.
Project description:Oncolytic viruses (OVs) are emerging as potential treatment options for cancer. Natural and genetically engineered viruses exhibit various antitumor mechanisms. OVs act by direct cytolysis, the potentiation of the immune system through antigen release, and the activation of inflammatory responses or indirectly by interference with different types of elements in the tumor microenvironment, modification of energy metabolism in tumor cells, and antiangiogenic action. The action of OVs is pleiotropic, and they show varied interactions with the host and tumor cells. An important impediment in oncolytic virotherapy is the journey of the virus into the tumor cells and the possibility of its binding to different biological and nonbiological vectors. OVs have been demonstrated to eliminate cancer cells that are resistant to standard treatments in many clinical trials for various cancers (melanoma, lung, and hepatic); however, there are several elements of resistance to the action of viruses per se. Therefore, it is necessary to evaluate the combination of OVs with other standard treatment modalities, such as chemotherapy, immunotherapy, targeted therapies, and cellular therapies, to increase the response rate. This review provides a comprehensive update on OVs, their use in oncolytic virotherapy, and the future prospects of this therapy alongside the standard therapies currently used in cancer treatment.
Project description:Cancer stem cells (CSCs), also termed "cancer-initiating cells" or "cancer progenitor cells," which have the ability to self-renew, proliferate, and maintain the neoplastic clone, have recently been discovered in a wide variety of pediatric tumors. These CSCs are thought to be responsible for tumorigenesis and tumor maintenance, aggressiveness, and recurrence due to inherent resistance to current treatment modalities such as chemotherapy and radiation. Oncolytic virotherapy offers a novel, targeted approach for eradicating pediatric CSCs using mechanisms of cell killing that differ from conventional therapies. Moreover, oncolytic viruses have the ability to target specific features of CSCs such as cell-surface proteins, transcription factors, and the CSC microenvironment. Through genetic engineering, a wide variety of foreign genes may be expressed by oncolytic viruses to augment the oncolytic effect. We review the current data regarding the ability of several types of oncolytic viruses (herpes simplex virus-1, adenovirus, reovirus, Seneca Valley virus, vaccinia virus, Newcastle disease virus, myxoma virus, vesicular stomatitis virus) to target and kill both CSCs and tumor cells in pediatric tumors. We highlight advantages and limitations of each virus and potential ways in which next-generation engineered viruses may target resilient CSCs.